cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A229829 Numbers coprime to 15.

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44, 46, 47, 49, 52, 53, 56, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 77, 79, 82, 83, 86, 88, 89, 91, 92, 94, 97, 98, 101, 103, 104, 106, 107, 109, 112, 113, 116, 118, 119
Offset: 1

Views

Author

Gary Detlefs, Oct 01 2013

Keywords

Comments

A001651 INTERSECT A047201.
a(n) - 15*floor((n-1)/8) - 2*((n-1) mod 8) has period 8, repeating [1,0,0,1,0,1,1,0].
Numbers whose odd part is 7-rough: products of terms of A007775 and powers of 2 (terms of A000079). - Peter Munn, Aug 04 2020
The asymptotic density of this sequence is 8/15. - Amiram Eldar, Oct 18 2020

Crossrefs

Lists of numbers coprime to other semiprimes: A007310 (6), A045572 (10), A162699 (14), A160545 (21), A235933 (35).
Subsequence of: A001651, A047201.
Subsequences: A000079, A007775.

Programs

  • Magma
    [n: n in [1..120] | IsOne(GCD(n,15))]; // Bruno Berselli, Oct 01 2013
    
  • Maple
    for n from 1 to 500 do if n mod 3<>0 and n mod 5<>0 then print(n) fi od
  • Mathematica
    Select[Range[120], GCD[#, 15] == 1 &] (* or *) t = 70; CoefficientList[Series[(1 + x + 2 x^2 + 3 x^3 + x^4 + 3 x^5 + 2 x^6 + x^7 + x^8)/((1 - x)^2 (1 + x) (1 + x^2) (1 + x^4)) , {x, 0, t}], x] (* Bruno Berselli, Oct 01 2013 *)
    Select[Range[120],CoprimeQ[#,15]&] (* Harvey P. Dale, Oct 31 2013 *)
  • Sage
    [i for i in range(120) if gcd(i, 15) == 1] # Bruno Berselli, Oct 01 2013

Formula

a(n+8) = a(n) + 15.
a(n) = 15*floor((n-1)/8) +2*f(n) +floor(2*phi*(f(n+1)+2)) -2*floor(phi*(f(n+1)+2)), where f(n) = (n-1) mod 8 and phi=(1+sqrt(5))/2.
a(n) = 15*floor((n-1)/8) +2*f(n) +floor((2*f(n)+5)/5) -floor((f(n)+2)/3), where f(n) = (n-1) mod 8.
From Bruno Berselli, Oct 01 2013: (Start)
G.f.: x*(1 +x +2*x^2 +3*x^3 +x^4 +3*x^5 +2*x^6 +x^7 +x^8) / ((1-x)^2*(1+x)*(1+x^2)*(1+x^4)). -
a(n) = a(n-1) +a(n-8) -a(n-9) for n>9. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*sqrt(7 + sqrt(5) - sqrt(6*(5 + sqrt(5))))*Pi/15. - Amiram Eldar, Dec 13 2021

A236206 Numbers not divisible by 3, 5 or 7.

Original entry on oeis.org

1, 2, 4, 8, 11, 13, 16, 17, 19, 22, 23, 26, 29, 31, 32, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 82, 83, 86, 88, 89, 92, 94, 97, 101, 103, 104, 106, 107, 109, 113, 116, 118, 121, 122, 124, 127, 128, 131, 134, 136
Offset: 1

Views

Author

Oleg P. Kirillov, Jan 20 2014

Keywords

Comments

Numbers whose odd part is 11-rough: products of terms of A008364 and powers of 2 (terms of A000079). - Peter Munn, Aug 03 2020
Numbers coprime to 105. The asymptotic density of this sequence is 16/35. - Amiram Eldar, Oct 23 2020

Crossrefs

Subsequences: A000079, A008364.
Intersection of any 2 of A160545, A229829, A235933.
Other sequences with similar definitions: A007775, A236217.

Programs

  • Mathematica
    Select[Range[300], Mod[#, 3] > 0 && Mod[#, 5] > 0 && Mod[#, 7] > 0 &] (* T. D. Noe, Feb 05 2014 *)
    Select[Range[300],Or@@Divisible[#,{3,5,7}]==False&] (* Harvey P. Dale, Mar 13 2014 *)
    Select[Range[150], CoprimeQ[105, #] &] (* Amiram Eldar, Oct 23 2020 *)

Formula

a(n) = a(n-1) + a(n-48) - a(n-49). - Amiram Eldar, Oct 23 2020

A307589 Numbers m such that 1 < gcd(m, 35) < m and m does not divide 35^e for e >= 0.

Original entry on oeis.org

10, 14, 15, 20, 21, 28, 30, 40, 42, 45, 50, 55, 56, 60, 63, 65, 70, 75, 77, 80, 84, 85, 90, 91, 95, 98, 100, 105, 110, 112, 115, 119, 120, 126, 130, 133, 135, 140, 145, 147, 150, 154, 155, 160, 161, 165, 168, 170, 180, 182, 185, 189, 190, 195, 196, 200, 203, 205
Offset: 1

Views

Author

Michael De Vlieger, Aug 22 2019

Keywords

Comments

Complement of the union of A003595 and A235933.
Analogous to A081062 and A105115 for terms 1 and 2 of A120944. This sequence applies to A120944(6) = 35.

Examples

			10 is in the sequence since gcd(10, 35) = 5 and 10 does not divide 35^e with integer e >= 0.
2 is not in the sequence since 2 is coprime to 35.
7 is not in the sequence since 7 | 35.
25 is not in the sequence since 25 | 35^2.
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 205, k = 35}, Select[Range@ nn, And[1 < GCD[#, k] < #, PowerMod[k, Floor@ Log2@ nn, #] != 0] &]]
  • PARI
    is(n)=gcd(n,35)>1 && n/5^valuation(n,5)/7^valuation(n,7)>1 \\ Charles R Greathouse IV, Sep 07 2022

Formula

a(n) = 35n/11 + O(log^2 n). - Charles R Greathouse IV, Sep 07 2022
Showing 1-3 of 3 results.