A270299
Numbers which are representable as a sum of eleven but no fewer consecutive nonnegative integers.
Original entry on oeis.org
88, 176, 352, 704, 968, 1144, 1408, 1496, 1672, 1936, 2024, 2288, 2552, 2728, 2816, 2992, 3256, 3344, 3608, 3784, 3872, 4048, 4136, 4576, 4664, 5104, 5192, 5368, 5456, 5632, 5896, 5984, 6248, 6424, 6512, 6688, 6952, 7216, 7304, 7568, 7744, 7832, 8096, 8272
Offset: 1
66 = 1 + 2 + 3 + ... + 9 + 10 + 11 = 21 + 22 + 23 (not in sequence);
88 = 3 + 4 + 5 + ... + 11 + 12 + 13;
176 = 11 + 12 + 13 + ... + 19 + 20 + 21;
352 = 27 + 28 + 29 + ... + 35 + 36 + 37.
A069562
Numbers, m, whose odd part (largest odd divisor, A000265(m)) is a nontrivial square.
Original entry on oeis.org
9, 18, 25, 36, 49, 50, 72, 81, 98, 100, 121, 144, 162, 169, 196, 200, 225, 242, 288, 289, 324, 338, 361, 392, 400, 441, 450, 484, 529, 576, 578, 625, 648, 676, 722, 729, 784, 800, 841, 882, 900, 961, 968, 1058, 1089, 1152, 1156, 1225, 1250, 1296, 1352, 1369
Offset: 1
To determine the odd part of 18, remove all factors of 2, leaving 9. 9 is a nontrivial square, so 18 is in the sequence. - _Peter Munn_, Jul 06 2020
Lists of numbers whose odd part satisfies other conditions:
A028982 (square),
A028983 (nonsquare),
A029747 (less than 6),
A029750 (less than 8),
A036349 (even number of prime factors),
A038550 (prime),
A070776 U {1} (power of a prime),
A072502 (square of a prime),
A091067 (has form 4k+3),
A091072 (has form 4k+1),
A093641 (noncomposite),
A105441 (composite),
A116451 (greater than 4),
A116882 (less than or equal to even part),
A116883 (greater than or equal to even part),
A122132 (squarefree),
A229829 (7-rough),
A236206 (11-rough),
A260488\{0} (has form 6k+1),
A325359 (proper prime power),
A335657 (odd number of prime factors),
A336101 (prime power).
-
Select[Range[1000], (odd = #/2^IntegerExponent[#, 2]) > 1 && IntegerQ @ Sqrt[odd] &] (* Amiram Eldar, Sep 29 2020 *)
-
upto(n) = { my(res = List()); forstep(i = 3, sqrtint(n), 2, for(j = 0, logint(n\i^2, 2), listput(res, i^2<David A. Corneth, Sep 28 2020
A236217
Numbers not divisible by 3, 5 or 11.
Original entry on oeis.org
1, 2, 4, 7, 8, 13, 14, 16, 17, 19, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 46, 47, 49, 52, 53, 56, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 82, 83, 86, 89, 91, 92, 94, 97, 98, 101, 103, 104, 106, 107, 109, 112, 113, 116, 118, 119, 122, 124, 127, 128
Offset: 1
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
-
Select[Range[200], Mod[#, 3] > 0 && Mod[#, 5] > 0 && Mod[#, 11] > 0 &] (* or *) Select[Range[200], Or @@ Divisible[#, {3, 5, 11}] == False &] (* Bruno Berselli, Mar 24 2014 *)
Select[Range[130], CoprimeQ[165, #] &] (* Amiram Eldar, Oct 23 2020 *)
A362012
Numbers k such that 1 < gcd(k, 105) < k and A007947(k) does not divide 105.
Original entry on oeis.org
6, 10, 12, 14, 18, 20, 24, 28, 30, 33, 36, 39, 40, 42, 48, 50, 51, 54, 55, 56, 57, 60, 65, 66, 69, 70, 72, 77, 78, 80, 84, 85, 87, 90, 91, 93, 95, 96, 98, 99, 100, 102, 108, 110, 111, 112, 114, 115, 117, 119, 120, 123, 126, 129, 130, 132, 133, 138, 140, 141, 144, 145, 150, 153, 154, 155, 156, 159, 160
Offset: 1
-
With[{n = 105}, Select[Range[200], And[! CoprimeQ[#, n], ! Divisible[n, Times @@ FactorInteger[#][[All, 1]]]] & ] ]
A381810
Array read by downward antidiagonals: A(n,k) is a generalization of odd columns of A125790 defined in Comments for n > 0, k >= 0.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 8, 36, 20, 10, 10, 64, 42, 84, 14, 12, 100, 72, 286, 100, 20, 14, 144, 110, 680, 322, 120, 26, 16, 196, 156, 1330, 744, 364, 140, 36, 18, 256, 210, 2300, 1430, 816, 406, 656, 46, 20, 324, 272, 3654, 2444, 1540, 888, 3396, 740, 60, 22, 400, 342, 5456, 3850, 2600, 1650, 10816, 3682, 840, 74
Offset: 1
Array begins:
===========================================================
n\k| 0 1 2 3 4 5 6 7 ...
---+-------------------------------------------------------
1 | 2, 4, 6, 8, 10, 12, 14, 16 ...
2 | 4, 16, 36, 64, 100, 144, 196, 256 ...
3 | 6, 20, 42, 72, 110, 156, 210, 272 ...
4 | 10, 84, 286, 680, 1330, 2300, 3654, 5456 ...
5 | 14, 100, 322, 744, 1430, 2444, 3850, 5712 ...
6 | 20, 120, 364, 816, 1540, 2600, 4060, 5984 ...
7 | 26, 140, 406, 888, 1650, 2756, 4270, 6256 ...
8 | 36, 656, 3396, 10816, 26500, 55056, 102116, 174336 ...
...
Cf.
A000123,
A001511,
A007814,
A053645,
A062383,
A070939,
A078121,
A106400,
A119387,
A125790,
A236206.
-
upto1(n) = my(v1); v1 = vector(n+1, i, vector(i, j, j==1 || j==i)); for(i=2, n, for(j=1, i-1, v1[i+1][j+1] = sum(k=j-1, i-1, v1[i][k+1]*v1[k+1][j]))); v1
A(n,m) = my(L = logint(n,2), A = valuation(n,2), B = logint(n>>A,2), v1, v2, v3); v1 = upto1(L+2); v2 = vector(L+2, i, vecsum(v1[i])); for(i=1, 2*m, v2 = vector(L+2, i, sum(j=1, i, v1[i][j]*v2[j]))); for(i=1, B, v3 = v2; for(j=1, L-i+1, v2[j+1] = sum(k=1, j+1, v1[j+1][k]*v3[k+1]*if(!bittest(n,L-i+1), (-1)^(j+k+1), 1)))); v2[A+2]
-
upto1(n) = my(v1); v1 = vector(n+1, i, vector(i, j, j==1 || j==i)); for(i=2, n, for(j=1, i-1, v1[i+1][j+1] = sum(k=j-1, i-1, v1[i][k+1]*v1[k+1][j]))); v1
upto2(n,m) = my(L = logint(n,2), A = valuation(n,2), B = logint(n>>A,2), v1, v2, v3, v4, v5); v1 = upto1(L+2); v2 = vector(L+2, i, 1); v3 = vector(m+1, i, 0); for(s=0, m, for(i=1, min(s+1,2), v2 = vector(L+2, i, sum(j=1, i, v1[i][j]*v2[j]))); v4 = v2; for(i=1, B, v5 = v4; for(j=1, L-i+1, v4[j+1] = sum(k=1, j+1, v1[j+1][k]*v5[k+1]*if(!bittest(n,L-i+1), (-1)^(j+k+1), 1)))); v3[s+1] = v4[A+2]); v3 \\ slightly modified version of the first program, some kind of memoization; generates A(n,k) for k=0..m
Showing 1-5 of 5 results.
Comments