A236760 Numbers n such that n^4 + n +- 1 are twin primes.
2, 6, 9, 12, 26, 44, 72, 77, 119, 204, 266, 290, 351, 506, 539, 542, 561, 644, 741, 807, 861, 924, 992, 996, 1016, 1032, 1049, 1356, 1412, 1556, 1640, 1794, 1847, 1862, 1871, 1895, 1980, 2036, 2129, 2222, 2289, 2354, 2445, 2616, 2630
Offset: 1
Examples
992^4 + 992 + 1 (968381957089) and 992^4 + 992 - 1 (968381957087) are twin primes. Thus, 992 is a member of this sequence.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[n: n in [1..5*10^3] |IsPrime(n^4+n-1) and IsPrime(n^4 +n+1)]; // Vincenzo Librandi, Dec 26 2015
-
Mathematica
Select[Range[3000], PrimeQ[#^4 + # - 1] && PrimeQ[#^4 + # + 1] &] (* Vincenzo Librandi, Dec 26 2015 *) Select[Range[3000],AllTrue[#^4+#+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 13 2017 *)
-
PARI
s=[]; for(n=1, 3000, if(isprime(n^4+n+1)&&isprime(n^4+n-+1), s=concat(s, n))); s \\ Colin Barker, Jan 31 2014
-
Python
import sympy from sympy import isprime {print(n) for n in range(10**4) if isprime(n**4+n-1) and isprime(n**4+n+1)}
Comments