cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A020483 Least prime p such that p+2n is also prime.

Original entry on oeis.org

2, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 7, 5, 3, 3, 7, 5, 3, 5, 3, 3, 5, 3, 7, 5, 3, 7, 5, 3, 3, 7, 5, 3, 5, 3, 3, 7, 5, 3, 5, 3, 7, 5, 3, 13, 7, 5, 3, 5, 3, 3, 5, 3, 3, 5, 3, 19, 13, 11, 13, 7, 5, 3, 5, 3, 7, 5, 3, 3, 11, 11, 7, 5, 3, 3, 7, 5, 3, 7, 5, 3, 5, 3, 7, 5, 3, 7, 5, 3, 3, 11, 11, 7, 5, 3, 3, 5, 3, 3, 13, 11, 31, 7
Offset: 0

Views

Author

Keywords

Comments

It is conjectured that a(n) always exists. a(n) has been computed for n < 5 * 10^11, with largest value a(248281210271) = 3307. - Jens Kruse Andersen, Nov 28 2004
If a(n) = a(n+1) = k, then 2*n + k and 2*(n+1) + k are twin primes. - Ya-Ping Lu, Sep 22 2020

Examples

			Given n = 2, we see that 2 + 2n = 6 = 2 * 3, but 3 + 2n = 7, which is prime, so a(2) = 3.
Given n = 3, we see that 2 + 2n = 8 = 2^3 and 3 + 2n = 9 = 3^2, but 5 + 2n = 11, which is prime, so a(3) = 5.
		

Crossrefs

Cf. A101045, A239392 (record values).
It is likely that A054906 is an identical sequence, although this seems to have not yet been proved. - N. J. A. Sloane, Feb 06 2017

Programs

  • GAP
    P:=Filtered([1..10000],IsPrime);;
    a:=List(List([0..110],n->Filtered(P,i->IsPrime(i+2*n))),Minimum); # Muniru A Asiru, Mar 26 2018
  • Haskell
    a020483 n = head [p | p <- a000040_list, a010051' (p + 2 * n) == 1]
    -- Reinhard Zumkeller, Nov 29 2014
    
  • Maple
    A020483 := proc(n)
        local p;
        p := 2;
        while true do
            if isprime(p+2*n) then
                return p;
            end if;
            p := nextprime(p) ;
        end do:
    end proc:
    seq(A020483(n),n=0..40); # R. J. Mathar, Sep 23 2016
  • Mathematica
    Table[j = 1; found = False; While[!found, j++; found = PrimeQ[Prime[j] + 2i]]; Prime[j], {i, 200}]
    leastPrimep2n[n_] := Block[{k = 1, p, q = 2 n}, While[p = Prime@k; !PrimeQ[p + q], k++]; p]; Array[leastPrimep2n, 102] (* Robert G. Wilson v, Mar 26 2008 *)
  • PARI
    a(n)=forprime(p=2,,if(isprime(p+2*n), return(p))) \\ Charles R Greathouse IV, Mar 19 2014
    

Formula

If a(n) exists, a(n) < 2n, which of course is a great overestimate. - T. D. Noe, Jul 16 2002
a(n) = A087711(n) - n. - Zak Seidov, Nov 28 2007
a(n) = A020484(n) - 2n. - Zak Seidov, May 29 2014
a(n) = 2 if and only if n = 0. - Alonso del Arte, Mar 14 2018

Extensions

a(0)=2 added by N. J. A. Sloane, Apr 25 2015

A108184 a(n) = smallest prime such that a(n) + 2n is also prime and such that a(n) > a(n-1).

Original entry on oeis.org

2, 3, 7, 11, 23, 31, 41, 47, 67, 71, 83, 109, 113, 131, 139, 149, 167, 193, 197, 233, 241, 251, 263, 271, 283, 317, 331, 347, 353, 373, 379, 401, 439, 443, 479, 487, 491, 503, 523, 541, 563, 571, 577, 587, 613, 619, 641, 727, 733, 761, 787, 809, 863, 877
Offset: 0

Views

Author

Giovanni Teofilatto, Jun 28 2005

Keywords

Comments

Increasing primes p such that p + 2n is prime.

Examples

			a(0)=2 since 2+0=2 is prime; a(1)=3 since 3+2=5 is prime.
a(2)=7 since 7+4=11 is prime; 5 is not in the sequence since 5+4=9 is not prime.
		

Crossrefs

Programs

  • Maple
    A108184 := proc(n) option remember; if n = 1 then 3; else for a from procname(n-1)+1 do if isprime(a) and isprime(a+2*n) then RETURN(a) ; fi; od: fi; end: seq(A108184(n),n=1..100) ; # R. J. Mathar, Jan 31 2009
  • Mathematica
    t = {2}; Do[p = NextPrime[t[[-1]]]; While[! PrimeQ[p + 2 n], p = NextPrime[p]]; AppendTo[t, p], {n, 100}]; t (* T. D. Noe, Feb 04 2014 *)
  • PARI
    A108184(maxp) = {my(a=[2], n=1); forprime(p=3, maxp, if(isprime(p+2*n), n++; a=concat(a, p))); a} \\ Colin Barker, Feb 03 2014

Extensions

Edited and extended by Ray Chandler, Jul 07 2005
Edited by N. J. A. Sloane, Feb 11 2009 at the suggestion of R. J. Mathar
Showing 1-2 of 2 results.