A237109 a(n) is the numerator of 2*n / ((n+2) * (n+3)).
1, 1, 1, 4, 5, 1, 7, 8, 3, 5, 11, 4, 13, 7, 5, 16, 17, 3, 19, 20, 7, 11, 23, 8, 25, 13, 9, 28, 29, 5, 31, 32, 11, 17, 35, 12, 37, 19, 13, 40, 41, 7, 43, 44, 15, 23, 47, 16, 49, 25, 17, 52, 53, 9, 55, 56, 19, 29, 59, 20, 61, 31, 21, 64, 65, 11, 67, 68, 23, 35, 71, 24
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..2500
Programs
-
Magma
[Numerator(2*n/((n+2)*(n+3))): n in [1..50]]; // G. C. Greubel, Aug 07 2018
-
Mathematica
a[1, n_] := HarmonicNumber[n+1]; a[n_, m_] := a[n, m] = m*(a[n-1, m]-a[n-1, m+1]); Table[a[3, m] // Numerator, {m, 1, 72}] (* Jean-François Alcover, Feb 11 2014 *) a[ n_] := n / {1, 2, 3, 1, 1, 6, 1, 1, 3, 2, 1, 3}[[Mod[n, 12, 1]]]; (* Michael Somos, Aug 01 2017 *)
-
PARI
{a(n) = if( n<0, -a(-n), numerator( 2*n / ((n+2) * (n+3))))}; /* Michael Somos, Aug 01 2017 */
Formula
a(n) = -a(-n) for all n in Z. - Michael Somos, Aug 01 2017
From Amiram Eldar, Nov 17 2022: (Start)
Multiplicative with a(2) = 1, a(2^e) = 2^e for e > 1, a(3^e) = 3^(e-1), and a(p^e) = p^e for p >= 5.
Sum_{k=1..n} a(k) ~ (49/144) * n^2. (End)
Dirichlet g.f.: zeta(s-1)*(1-1/2^s+2/4^s)*(1-2/3^s). - Amiram Eldar, Jan 05 2023
Extensions
New name using Somos's Pari code from Joerg Arndt, May 27 2018
Keyword:mult added by Andrew Howroyd, Jul 31 2018
Comments