A237753
Number of partitions of n such that 2*(greatest part) = (number of parts).
Original entry on oeis.org
0, 1, 0, 0, 1, 1, 1, 2, 1, 2, 3, 4, 5, 7, 7, 9, 12, 15, 17, 23, 27, 34, 42, 50, 60, 75, 87, 106, 128, 154, 182, 222, 260, 311, 369, 437, 515, 613, 716, 845, 993, 1166, 1361, 1599, 1861, 2176, 2534, 2950, 3422, 3983, 4605, 5339, 6174, 7136, 8227, 9500, 10928
Offset: 1
a(8) = 2 counts these partitions: 311111, 2222.
-
z = 50; Table[Count[IntegerPartitions[n], p_ /; 2 Max[p] = = Length[p]], {n, z}]
(* or *)
nmax = 100; Rest[CoefficientList[Series[Sum[x^(3*k-1) * Product[(1 - x^(2*k+j-1)) / (1 - x^j), {j, 1, k-1}], {k, 1, nmax/3 + 1}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 15 2024 *)
nmax = 100; p = x; s = x; Do[p = Normal[Series[p*x^3*(1 - x^(3*k - 1))*(1 - x^(3*k))*(1 - x^(3*k + 1))/((1 - x^(2*k + 1))*(1 - x^(2*k))*(1 - x^k)), {x, 0, nmax}]]; s += p;, {k, 1, nmax/3 + 1}]; Take[CoefficientList[s, x], nmax] (* Vaclav Kotesovec, Oct 16 2024 *)
-
my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(3*k-1)*prod(j=1, k-1, (1-x^(2*k+j-1))/(1-x^j))))) \\ Seiichi Manyama, Jan 24 2022
A237755
Number of partitions of n such that 2*(greatest part) >= (number of parts).
Original entry on oeis.org
1, 2, 2, 4, 6, 9, 12, 18, 24, 34, 46, 63, 83, 111, 144, 190, 245, 318, 405, 520, 657, 833, 1045, 1312, 1634, 2036, 2517, 3114, 3829, 4705, 5751, 7027, 8544, 10381, 12564, 15190, 18301, 22026, 26425, 31669, 37849, 45180, 53796, 63983, 75923, 89987, 106435
Offset: 1
a(6) = 9 counts all of the 11 partitions of 6 except these: 21111, 111111.
-
z = 50; Table[Count[IntegerPartitions[n], p_ /; 2 Max[p] >= Length[p]], {n, z}]
-
{a(n) = my(A); A = sum(m=0,n,x^m*prod(k=1,m,(1-x^(2*m+k-1))/(1-x^k +x*O(x^n)))); polcoeff(A,n)}
for(n=1,60,print1(a(n),", ")) \\ Paul D. Hanna, Aug 03 2015
A361858
Number of integer partitions of n such that the maximum is less than twice the median.
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 8, 12, 15, 19, 22, 31, 34, 45, 55, 67, 78, 100, 115, 144, 170, 203, 238, 291, 337, 403, 473, 560, 650, 772, 889, 1046, 1213, 1414, 1635, 1906, 2186, 2533, 2913, 3361, 3847, 4433, 5060, 5808, 6628, 7572, 8615, 9835, 11158, 12698, 14394
Offset: 1
The a(1) = 1 through a(8) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(11111) (222) (322) (71)
(321) (331) (332)
(2211) (2221) (431)
(111111) (1111111) (2222)
(3221)
(3311)
(22211)
(11111111)
The partition y = (3,2,2,1) has maximum 3 and median 2, and 3 < 2*2, so y is counted under a(8).
For minimum instead of median we have
A053263.
For length instead of median we have
A237754.
For mean instead of median we have
A361852.
A000975 counts subsets with integer median.
Cf.
A008284,
A027193,
A237751,
A237755,
A237820,
A237824,
A240219,
A361394,
A361851,
A361860,
A361907.
A361907
Number of integer partitions of n such that (length) * (maximum) > 2*n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 3, 4, 7, 11, 19, 26, 43, 60, 80, 115, 171, 201, 297, 374, 485, 656, 853, 1064, 1343, 1758, 2218, 2673, 3477, 4218, 5423, 6523, 7962, 10017, 12104, 14409, 17978, 22031, 26318, 31453, 38176, 45442, 55137, 65775, 77451, 92533, 111485, 131057
Offset: 1
The a(7) = 3 through a(10) = 11 partitions:
(511) (611) (711) (721)
(4111) (5111) (5211) (811)
(31111) (41111) (6111) (6211)
(311111) (42111) (7111)
(51111) (52111)
(411111) (61111)
(3111111) (421111)
(511111)
(3211111)
(4111111)
(31111111)
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not > 2*7, so y is not counted under a(7).
The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 is not > 2*8, so y is not counted under a(8).
The partition y = (5,1,1,1) has length 4 and maximum 5, and 4*5 > 2*8, so y is counted under a(8).
The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 > 2*9, so y is counted under a(9).
The partition y = (3,2,1,1) has diagram:
o o o
o o .
o . .
o . .
with complement (shown in dots) of size 5, and 5 is not > 7, so y is not counted under a(7).
Reversing the inequality gives
A361852.
A051293 counts subsets with integer mean.
A116608 counts partitions by number of distinct parts.
Cf.
A027193,
A111907,
A237752,
A237755,
A237821,
A237824,
A237984,
A324562,
A326622,
A327482,
A349156,
A360071,
A361394.
A237752
Number of partitions of n such that 2*(greatest part) <= (number of parts).
Original entry on oeis.org
0, 1, 1, 1, 2, 3, 4, 6, 7, 10, 13, 18, 23, 31, 39, 50, 64, 82, 102, 130, 162, 203, 252, 313, 384, 475, 580, 710, 864, 1053, 1273, 1544, 1859, 2240, 2688, 3224, 3851, 4602, 5476, 6514, 7727, 9160, 10826, 12791, 15072, 17747, 20853, 24481, 28679, 33577, 39231
Offset: 1
The partitions of 6 that do not qualify are 22311, 21111, 111111, so that a(6) = 11 - 3 = 8.
-
z = 50; Table[Count[IntegerPartitions[n], p_ /; 2 Max[p] <= Length[p]], {n, z}]
(* also *)
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Max[Max[p],2*Length[p]]]], {n, 50}]
A361857
Number of integer partitions of n such that the maximum is greater than twice the median.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 3, 7, 11, 16, 25, 37, 52, 74, 101, 138, 185, 248, 325, 428, 554, 713, 914, 1167, 1476, 1865, 2336, 2922, 3633, 4508, 5562, 6854, 8405, 10284, 12536, 15253, 18489, 22376, 26994, 32507, 39038, 46802, 55963, 66817, 79582, 94643, 112315
Offset: 1
The a(5) = 1 through a(10) = 16 partitions:
(311) (411) (511) (521) (522) (622)
(3111) (4111) (611) (621) (721)
(31111) (4211) (711) (811)
(5111) (5211) (5221)
(32111) (6111) (5311)
(41111) (33111) (6211)
(311111) (42111) (7111)
(51111) (43111)
(321111) (52111)
(411111) (61111)
(3111111) (331111)
(421111)
(511111)
(3211111)
(4111111)
(31111111)
The partition y = (5,2,2,1) has maximum 5 and median 2, and 5 > 2*2, so y is counted under a(10).
For length instead of median we have
A237751.
For minimum instead of median we have
A237820.
The complement is counted by
A361848.
Reversing the inequality gives
A361858.
These partitions have ranks
A361867.
For mean instead of median we have
A361907.
A000975 counts subsets with integer median.
A361867
Positive integers > 1 whose prime indices satisfy (maximum) > 2*(median).
Original entry on oeis.org
20, 28, 40, 44, 52, 56, 66, 68, 76, 78, 80, 84, 88, 92, 99, 102, 104, 112, 114, 116, 117, 120, 124, 132, 136, 138, 148, 152, 153, 156, 160, 164, 168, 170, 171, 172, 174, 176, 184, 186, 188, 190, 198, 200, 204, 207, 208, 212, 220, 222, 224, 228, 230, 232, 234
Offset: 1
The prime indices of 84 are {1,1,2,4}, with maximum 4 and median 3/2, and 4 > 2*(3/2), so 84 is in the sequence.
The terms together with their prime indices begin:
20: {1,1,3}
28: {1,1,4}
40: {1,1,1,3}
44: {1,1,5}
52: {1,1,6}
56: {1,1,1,4}
66: {1,2,5}
68: {1,1,7}
76: {1,1,8}
78: {1,2,6}
80: {1,1,1,1,3}
84: {1,1,2,4}
88: {1,1,1,5}
92: {1,1,9}
99: {2,2,5}
The LHS is
A061395 (greatest prime index).
For mean instead of median we have
A361907.
A000975 counts subsets with integer median.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100], Max@@prix[#]>2*Median[prix[#]]&]
A237754
Number of partitions of n such that 2*(greatest part) > (number of parts).
Original entry on oeis.org
1, 1, 2, 4, 5, 8, 11, 16, 23, 32, 43, 59, 78, 104, 137, 181, 233, 303, 388, 497, 630, 799, 1003, 1262, 1574, 1961, 2430, 3008, 3701, 4551, 5569, 6805, 8284, 10070, 12195, 14753, 17786, 21413, 25709, 30824, 36856, 44014, 52435, 62384, 74062, 87811, 103901
Offset: 1
a(5) = 5 counts these partitions: 5, 41, 32, 311, 221.
-
z = 50; Table[Count[IntegerPartitions[n], p_ /; 2 Max[p] > Length[p]], {n, z}]
-
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^k*prod(j=1, k, (1-x^(2*k+j-2))/(1-x^j)))) \\ Seiichi Manyama, Jan 25 2022
Showing 1-8 of 8 results.
Comments