A238208 The total number of 1's in all partitions of n into an odd number of distinct parts.
0, 1, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 12, 14, 17, 20, 24, 28, 33, 38, 45, 52, 60, 69, 80, 91, 105, 120, 137, 156, 178, 202, 230, 261, 295, 334, 378, 426, 481, 542, 609, 685, 769, 862, 966, 1082, 1209, 1351, 1508, 1681, 1873, 2086, 2319, 2578
Offset: 0
Examples
a(10) = 3 because the partitions in question are: 7+2+1, 6+3+1, 5+4+1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from Andrew Howroyd)
Programs
-
Maple
A238208 := proc(n) local a,L,Lset; a := 0 ; L := combinat[firstpart](n) ; while true do # check that parts are distinct Lset := convert(L,set) ; if nops(L) = nops(Lset) then # check that number is odd if type(nops(L),'odd') then if 1 in Lset then a := a+1 ; end if; end if; end if; L := combinat[nextpart](L) ; if L = FAIL then return a; end if; end do: a ; end proc: # R. J. Mathar, May 11 2016 # second Maple program: b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i>n, 0, b(n, i+1, t)+b(n-i, i+1, 1-t))) end: a:= n-> b(n-1, 2, 1): seq(a(n), n=0..100); # Alois P. Heinz, May 01 2020
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i > n, 0, b[n, i+1, t] + b[n-i, i+1, 1-t]]]; a[n_] := b[n-1, 2, 1]; a /@ Range[0, 100] (* Jean-François Alcover, May 17 2020, after Alois P. Heinz *)
-
PARI
seq(n)={my(A=O(x^n)); Vec(x*(eta(x^2 + A)/(eta(x + A)*(1+x)) + eta(x + A)/(1-x))/2, -(n+1))} \\ Andrew Howroyd, May 01 2020
Formula
G.f.: (1/2)*(x/(1+x))*(Product_{n>=1} 1 + x^n) + (1/2)*(x/(1-x))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, May 17 2020
From Peter Bala, Feb 02 2021: (Start)
a(n+1) = d(n) - ( d(n-1) + d(n-3) ) + ( d(n-4) + d(n-6) + d(n-8) ) - ( d(n-9) + d(n-11) + d(n-13) + d(n-15) ) + ( d(n-16) + d(n-18) + d(n-20) + d(n-22) + d(n-24) ) - ( d(n-25) + d(n-27) + d(n-29) + d(n-31) + d(n-33) + d(n-35) ) + ..., where d(n) = A000009(n) is the number of partitions of n into distinct parts, with the convention that d(n) = 0 for n < 0.
G.f.: x/(1 - x^2)*Sum_{n >= 0} (-1)^n*x^((n^2+n+1-(-1)^n)/2)/Product_{k = 1..n} 1 - x^k.
Alternative g.f.: ( Product_{k >= 1} 1 + x^k ) * x*Sum_{n >= 0} (-1)^n*x^(n^2)*(1 - x^(2*n+2))/(1 - x^2).
Faster converging g.f. (conjecture): Sum_{n >= 0} x^((n+1)*(2*n+1))/ Product_{k = 1..2*n} 1 - x^k. (End)
Extensions
a(51)-a(60) from R. J. Mathar, May 11 2016
Comments