cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238208 The total number of 1's in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 12, 14, 17, 20, 24, 28, 33, 38, 45, 52, 60, 69, 80, 91, 105, 120, 137, 156, 178, 202, 230, 261, 295, 334, 378, 426, 481, 542, 609, 685, 769, 862, 966, 1082, 1209, 1351, 1508, 1681, 1873, 2086, 2319, 2578
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).
Or: the number of partitions of n-1 into an even number of distinct parts >=2. - R. J. Mathar, May 11 2016

Examples

			a(10) = 3 because the partitions in question are: 7+2+1, 6+3+1, 5+4+1.
		

Crossrefs

Column k=1 of A238450.

Programs

  • Maple
    A238208 := proc(n)
        local a,L,Lset;
        a := 0 ;
        L := combinat[firstpart](n) ;
        while true do
            # check that parts are distinct
            Lset := convert(L,set) ;
            if nops(L) = nops(Lset) then
                # check that number is odd
                if type(nops(L),'odd') then
                    if 1 in Lset then
                        a := a+1 ;
                    end if;
                end if;
            end if;
            L := combinat[nextpart](L) ;
            if L = FAIL then
                return a;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, May 11 2016
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n=0, t,
         `if`(i>n, 0, b(n, i+1, t)+b(n-i, i+1, 1-t)))
        end:
    a:= n-> b(n-1, 2, 1):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 01 2020
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i > n, 0, b[n, i+1, t] + b[n-i, i+1, 1-t]]];
    a[n_] := b[n-1, 2, 1];
    a /@ Range[0, 100] (* Jean-François Alcover, May 17 2020, after Alois P. Heinz *)
  • PARI
    seq(n)={my(A=O(x^n)); Vec(x*(eta(x^2 + A)/(eta(x + A)*(1+x)) + eta(x + A)/(1-x))/2, -(n+1))} \\ Andrew Howroyd, May 01 2020

Formula

a(n) = Sum_{j=1..round(n/2)} A067661(n-(2*j-1)) - Sum_{j=1..floor(n/2)} A067659(n-2*j).
G.f.: (1/2)*(x/(1+x))*(Product_{n>=1} 1 + x^n) + (1/2)*(x/(1-x))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, May 17 2020
From Peter Bala, Feb 02 2021: (Start)
a(n+1) = d(n) - ( d(n-1) + d(n-3) ) + ( d(n-4) + d(n-6) + d(n-8) ) - ( d(n-9) + d(n-11) + d(n-13) + d(n-15) ) + ( d(n-16) + d(n-18) + d(n-20) + d(n-22) + d(n-24) ) - ( d(n-25) + d(n-27) + d(n-29) + d(n-31) + d(n-33) + d(n-35) ) + ..., where d(n) = A000009(n) is the number of partitions of n into distinct parts, with the convention that d(n) = 0 for n < 0.
G.f.: x/(1 - x^2)*Sum_{n >= 0} (-1)^n*x^((n^2+n+1-(-1)^n)/2)/Product_{k = 1..n} 1 - x^k.
Alternative g.f.: ( Product_{k >= 1} 1 + x^k ) * x*Sum_{n >= 0} (-1)^n*x^(n^2)*(1 - x^(2*n+2))/(1 - x^2).
Faster converging g.f. (conjecture): Sum_{n >= 0} x^((n+1)*(2*n+1))/ Product_{k = 1..2*n} 1 - x^k. (End)

Extensions

a(51)-a(60) from R. J. Mathar, May 11 2016