cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238952 The size (the number of arcs) in the transitive closure of divisor lattice D(n).

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 1, 6, 3, 5, 1, 12, 1, 5, 5, 10, 1, 12, 1, 12, 5, 5, 1, 22, 3, 5, 6, 12, 1, 19, 1, 15, 5, 5, 5, 27, 1, 5, 5, 22, 1, 19, 1, 12, 12, 5, 1, 35, 3, 12, 5, 12, 1, 22, 5, 22, 5, 5, 1, 42, 1, 5, 12, 21, 5, 19, 1, 12, 5, 19, 1, 48, 1, 5, 12, 12, 5
Offset: 1

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Comments

a(n) is the number of ordered factorizations of n = r*s*t such that t is not equal to 1. For example: a(4)=3 because we have: 1*1*4, 1*2*2, and 2*1*2. Cf. A007425. - Geoffrey Critzer, Jan 01 2015
Number of pairs (d1, d2) of divisors of n such that d1<=d2, d1|n, d2|n, d1|d2 and d1 + d2 <= n. For example, a(8) has 6 divisor pairs (1,1), (1,2), (1,4), (2,2), (2,4) and (4,4). - Wesley Ivan Hurt, May 01 2021

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(tau(d), d in divisors(n) minus {n}), n=1..80); # Ridouane Oudra, Apr 26 2025
  • Mathematica
    Table[Map[DivisorSigma[0, #] &, Drop[Divisors[n], -1]] // Total, {n, 1, 77}] (* Geoffrey Critzer, Jan 01 2015 *)
  • PARI
    A238952(n) = sumdiv(n, d, (dAntti Karttunen, Mar 07 2018, after Geoffrey Critzer's Mathematica-code.

Formula

Conjecture: a(n) = Sum_{i=1..floor(n/2)} d(i) * (floor(n/i) - floor((n-1)/i)), where d(n) is the number of divisors of n. - Wesley Ivan Hurt, Dec 21 2017
a(n) = Sum_{d|n, dA000005(d). - Antti Karttunen, Mar 08 2018, after Geoffrey Critzer's Mathematica-code.
G.f.: Sum_{k>=1} (d(k) - 1)*x^k/(1 - x^k), where d(k) = number of divisors of k (A000005). - Ilya Gutkovskiy, Sep 11 2018
a(n) = A007425(n) - A000005(n). - Ridouane Oudra, Apr 26 2025