A238952 The size (the number of arcs) in the transitive closure of divisor lattice D(n).
0, 1, 1, 3, 1, 5, 1, 6, 3, 5, 1, 12, 1, 5, 5, 10, 1, 12, 1, 12, 5, 5, 1, 22, 3, 5, 6, 12, 1, 19, 1, 15, 5, 5, 5, 27, 1, 5, 5, 22, 1, 19, 1, 12, 12, 5, 1, 35, 3, 12, 5, 12, 1, 22, 5, 22, 5, 5, 1, 42, 1, 5, 12, 21, 5, 19, 1, 12, 5, 19, 1, 48, 1, 5, 12, 12, 5
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arXiv:1405.5283 [math.NT], 2014 (see 13th line in Table 1).
Programs
-
Maple
with(numtheory): seq(add(tau(d), d in divisors(n) minus {n}), n=1..80); # Ridouane Oudra, Apr 26 2025
-
Mathematica
Table[Map[DivisorSigma[0, #] &, Drop[Divisors[n], -1]] // Total, {n, 1, 77}] (* Geoffrey Critzer, Jan 01 2015 *)
-
PARI
A238952(n) = sumdiv(n, d, (d
Antti Karttunen, Mar 07 2018, after Geoffrey Critzer's Mathematica-code.
Formula
Conjecture: a(n) = Sum_{i=1..floor(n/2)} d(i) * (floor(n/i) - floor((n-1)/i)), where d(n) is the number of divisors of n. - Wesley Ivan Hurt, Dec 21 2017
a(n) = Sum_{d|n, dA000005(d). - Antti Karttunen, Mar 08 2018, after Geoffrey Critzer's Mathematica-code.
G.f.: Sum_{k>=1} (d(k) - 1)*x^k/(1 - x^k), where d(k) = number of divisors of k (A000005). - Ilya Gutkovskiy, Sep 11 2018
Comments