cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239053 Sum of divisors of 4*n-1.

Original entry on oeis.org

4, 8, 12, 24, 20, 24, 40, 32, 48, 56, 44, 48, 72, 72, 60, 104, 68, 72, 124, 80, 84, 120, 112, 120, 156, 104, 108, 152, 144, 144, 168, 128, 132, 240, 140, 168, 228, 152, 192, 216, 164, 168, 260, 248, 180, 248, 216, 192, 336, 200, 240, 312, 212, 264, 296
Offset: 1

Views

Author

Omar E. Pol, Mar 09 2014

Keywords

Comments

Bisection of A008438.
a(n) is also the total number of cells in the n-th branch of the third quadrant of the spiral formed by the parts of the symmetric representation of sigma(4n-1), see example. For the quadrants 1, 2, 4 see A112610, A239052, A193553. The spiral has been obtained according to the following way: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> A237270.
We can find the spiral (mentioned above) on the terraces of the pyramid described in A244050. - Omar E. Pol, Dec 06 2016

Examples

			Illustration of initial terms:
-----------------------------------------------------
.        Branches of the spiral
.        in the third quadrant             n    a(n)
-----------------------------------------------------
.     _       _       _       _
.    | |     | |     | |     | |
.    | |     | |     | |     |_|_ _
.    | |     | |     | |    2  |_ _|       1      4
.    | |     | |     |_|_     2
.    | |     | |    4    |_
.    | |     |_|_ _        |_ _ _ _
.    | |    6      |_      |_ _ _ _|       2      8
.    |_|_ _ _        |_   4
.   8      | |_ _      |
.          |_    |     |_ _ _ _ _ _
.            |_  |_    |_ _ _ _ _ _|       3     12
.           8  |_ _|  6
.                  |
.                  |_ _ _ _ _ _ _ _
.                  |_ _ _ _ _ _ _ _|       4     24
.                 8
.
For n = 4 the sum of divisors of 4*n-1 is 1 + 3 + 5 + 15 = A000203(15) = 24. On the other hand the parts of the symmetric representation of sigma(15) are [8, 8, 8] and the sum of them is 8 + 8 + 8 = 24, equaling the sum of divisors of 15, so a(4) = 24.
		

Crossrefs

Programs

Formula

a(n) = A000203(4n-1) = A000203(A004767(n-1)).
a(n) = 4*A097723(n-1). - Joerg Arndt, Mar 09 2014
Sum_{k=1..n} a(k) = (Pi^2/4) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 17 2022