A239053 Sum of divisors of 4*n-1.
4, 8, 12, 24, 20, 24, 40, 32, 48, 56, 44, 48, 72, 72, 60, 104, 68, 72, 124, 80, 84, 120, 112, 120, 156, 104, 108, 152, 144, 144, 168, 128, 132, 240, 140, 168, 228, 152, 192, 216, 164, 168, 260, 248, 180, 248, 216, 192, 336, 200, 240, 312, 212, 264, 296
Offset: 1
Examples
Illustration of initial terms: ----------------------------------------------------- . Branches of the spiral . in the third quadrant n a(n) ----------------------------------------------------- . _ _ _ _ . | | | | | | | | . | | | | | | |_|_ _ . | | | | | | 2 |_ _| 1 4 . | | | | |_|_ 2 . | | | | 4 |_ . | | |_|_ _ |_ _ _ _ . | | 6 |_ |_ _ _ _| 2 8 . |_|_ _ _ |_ 4 . 8 | |_ _ | . |_ | |_ _ _ _ _ _ . |_ |_ |_ _ _ _ _ _| 3 12 . 8 |_ _| 6 . | . |_ _ _ _ _ _ _ _ . |_ _ _ _ _ _ _ _| 4 24 . 8 . For n = 4 the sum of divisors of 4*n-1 is 1 + 3 + 5 + 15 = A000203(15) = 24. On the other hand the parts of the symmetric representation of sigma(15) are [8, 8, 8] and the sum of them is 8 + 8 + 8 = 24, equaling the sum of divisors of 15, so a(4) = 24.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[SumOfDivisors(4*n-1): n in [1..60]]; // Vincenzo Librandi, Dec 07 2016
-
Maple
A239053:=n->numtheory[sigma](4*n-1): seq(A239053(n), n=1..80); # Wesley Ivan Hurt, Dec 06 2016
-
Mathematica
DivisorSigma[1,4*Range[60]-1] (* Harvey P. Dale, Dec 06 2016 *) Table[DivisorSigma[1, 4 n - 1], {n, 100}] (* Vincenzo Librandi, Dec 07 2016 *)
-
PARI
a(n) = sigma(4*n-1); \\ Michel Marcus, Dec 07 2016
Formula
a(n) = 4*A097723(n-1). - Joerg Arndt, Mar 09 2014
Sum_{k=1..n} a(k) = (Pi^2/4) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 17 2022
Comments