cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239141 Number of strict partitions of n having standard deviation <= 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2
Offset: 1

Views

Author

Clark Kimberling, Mar 11 2014

Keywords

Comments

Regarding standard deviation, see Comments at A238616.

Examples

			The standard deviations of the strict partitions of 9 are 0.0, 3.5, 2.5, 1.5, 2.16025, 0.5, 1.63299, 0.816497, so that a(9) = 3.
		

Crossrefs

Programs

  • Mathematica
    z = 30; g[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, Length[t]}]/Length[t]]
    Table[Count[g[n], p_ /; s[p] < 1], {n, z}]   (* A239140 *)
    Table[Count[g[n], p_ /; s[p] <= 1], {n, z}]  (* A239141 *)
    Table[Count[g[n], p_ /; s[p] == 1], {n, z}]  (* periodic 01 *)
    Table[Count[g[n], p_ /; s[p] > 1], {n, z}]   (* A239142 *)
    Table[Count[g[n], p_ /; s[p] >= 1], {n, z}]  (* A239143 *)
    t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsQ[n]}]]
    ListPlot[Sort[t[30]]] (*plot of st.dev's of strict partitions of 30*)
    (* Peter J. C. Moses, Mar 03 2014 *)
    Join[{1, 1, 2},LinearRecurrence[{0, 0, 1},{2, 2, 3},83]] (* Ray Chandler, Aug 25 2015 *)
  • PARI
    A239141(n) = (1+(n>3)+!(n%3)); \\ Antti Karttunen, May 24 2021

Formula

a(n) + A239142(n) = A000009(n) for n >= 1.
G.f.: -(x^5 + x^4 + x^3 + 2*x^2 + x + 1)*x / ((x-1)*(x^2 + x + 1)). - Alois P. Heinz, Mar 14 2014