A239284 a(n) = (15^n - (-1)^n)/16.
0, 1, 14, 211, 3164, 47461, 711914, 10678711, 160180664, 2402709961, 36040649414, 540609741211, 8109146118164, 121637191772461, 1824557876586914, 27368368148803711, 410525522232055664, 6157882833480834961, 92368242502212524414, 1385523637533187866211
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..849
- Index entries for linear recurrences with constant coefficients, signature (14,15).
Crossrefs
Cf. A062160 (row 15).
Programs
-
Magma
[(15^n - (-1)^n)/16: n in [0..30]]; // G. C. Greubel, May 26 2018
-
Mathematica
CoefficientList[Series[x/(1-14*x-15*x^2), {x,0,50}], x] (* or *) Table[ (15^n - (-1)^n)/16, {n,0,30}] (* or *) LinearRecurrence[{14,15}, {0,1}, 30] (* G. C. Greubel, May 26 2018 *)
-
PARI
a(n) = (15^n - (-1)^n)/16; \\ Michel Marcus, Mar 16 2014
-
PARI
my(x='x+O('x^30)); concat([0], Vec(x/(1 -14*x - 15*x^2))) \\ G. C. Greubel, May 26 2018
Formula
G.f.: x/(1 - 14*x - 15*x^2).
a(n) = 14*a(n-1) + 15*a(n-2) for n > 1, a(0) = 0, a(1) = 1.
a(n) = (1/16)*(15^n - (-1)^n).
E.g.f.: (exp(15*x) - exp(-x))/16. - G. C. Greubel, May 26 2018
Comments