A240847 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) for n>3, a(0)=a(1)=a(3)=0, a(2)=1.
0, 0, 1, 0, 1, 0, 0, -2, -5, -12, -25, -50, -96, -180, -331, -600, -1075, -1908, -3360, -5878, -10225, -17700, -30509, -52390, -89664, -153000, -260375, -442032, -748775, -1265832, -2136000, -3598250, -6052061, -10164540
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Programs
-
GAP
List([0..40], n-> (6*Fibonacci(n-3) - (n-3)*Lucas(1,-1,n-3)[2])/5 ); # G. C. Greubel, Feb 06 2020
-
Magma
[(6*Fibonacci(n-3) - (n-3)*Lucas(n-3))/5: n in [0..40]]; // G. C. Greubel, Feb 06 2020
-
Maple
with(combinat): seq( ((n+3)*fibonacci(n-3) - 2*(n-3)*fibonacci(n-2))/5, n=0..40); # G. C. Greubel, Feb 06 2020
-
Mathematica
a[n_]:= a[n]= 2*a[n-1] +a[n-2] -2*a[n-3] -a[n-4]; a[0]= a[1]= a[3]= 0; a[2]= 1; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Apr 17 2014 *) CoefficientList[Series[x^2*(1-2*x)/(1-x-x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, May 09 2014 *) nxt[{a_,b_,c_,d_}]:={b,c,d,2d+c-2b-a}; NestList[nxt,{0,0,1,0},40][[All,1]] (* Harvey P. Dale, Sep 17 2022 *)
-
PARI
Vec(x^2*(1-2*x)/(1-x-x^2)^2 + O(x^100)) \\ Colin Barker, Apr 13 2014
-
PARI
vector(41, n, my(m=n-1); ((m+3)*fibonacci(m-3) - 2*(m-3)*fibonacci(m-2) )/5 ) \\ G. C. Greubel, Feb 06 2020
-
Sage
[((n+3)*fibonacci(n-3) - 2*(n-3)*fibonacci(n-2))/5 for n in (0..40)] # G. C. Greubel, Feb 06 2020
Formula
a(n) = 0, 0, 1, 0, 1, 0, 0, followed by -A067331.
G.f.: x^2*(1-2*x)/(1-x-x^2)^2. - Colin Barker, Apr 13 2014
a(n) = ( (10*n + (3-5*n)*t)*(1+t)^n + (10*n-(3-5*n)*t)*(1-t)^n )/(25*2^n), where t=sqrt(5). - Bruno Berselli, Apr 17 2014
a(n) = (6*Fibonacci(n-3) - (n-3)*Lucas(n-3))/5 = ((n+3)*Fibonacci(n-3) - 2*(n-3)*Fibonacci(n-2))/5. - G. C. Greubel, Feb 06 2020
Comments