cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A006843 Triangle read by rows: row n gives denominators of Farey series of order n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 3, 1, 1, 4, 3, 2, 3, 4, 1, 1, 5, 4, 3, 5, 2, 5, 3, 4, 5, 1, 1, 6, 5, 4, 3, 5, 2, 5, 3, 4, 5, 6, 1, 1, 7, 6, 5, 4, 7, 3, 5, 7, 2, 7, 5, 3, 7, 4, 5, 6, 7, 1, 1, 8, 7, 6, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 6, 7, 8, 1, 1, 9, 8, 7, 6, 5, 9, 4, 7, 3, 8, 5, 7, 9, 2, 9, 7, 5, 8, 3, 7, 4, 9, 5, 6, 7, 8, 9, 1
Offset: 1

Views

Author

Keywords

Examples

			0/1, 1/1;
0/1, 1/2, 1/1;
0/1, 1/3, 1/2, 2/3, 1/1;
0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1;
0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1;
... = A006842/A006843.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 152.
  • Martin Gardner, The Last Recreations, Chapter 12: Strong Laws of Small Primes, Springer-Verlag, 1997, pp. 191-205, especially p. 199.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 23.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
  • A. O. Matveev, Farey Sequences, De Gruyter, 2017.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 141.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n has A005728(n) terms. - Michel Marcus, Jun 27 2014
Row sums give A240877.
Cf. A006842 (numerators), A049455, A049456, A007305, A007306.
See also A177405/A177407.

Programs

  • Maple
    Farey := proc(n) sort(convert(`union`({0},{seq(seq(m/k,m=1..k),k=1..n)}),list)) end: seq(denom(Farey(i)),i=1..5); # Peter Luschny, Apr 28 2009
  • Mathematica
    Farey[n_] := Union[ Flatten[ Join[{0}, Table[a/b, {b, n}, {a, b}]]]]; Flatten[ Table[ Denominator[ Farey[n]], {n, 9}]] (* Robert G. Wilson v, Apr 08 2004 *)
    Table[Denominator[FareySequence[n]],{n,10}]//Flatten (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 04 2016 *)
  • PARI
    row(n) = {vf = [0]; for (k=1, n, for (m=1, k, vf = concat(vf, m/k););); vf = vecsort(Set(vf)); for (i=1, #vf, print1(denominator(vf[i]), ", "));} \\ Michel Marcus, Jun 27 2014

Extensions

More terms from Robert G. Wilson v, Apr 08 2004
Changed offset (=order of first row) to 1 by R. J. Mathar, Apr 26 2009

A213544 Sum of numerators of Farey Sequence of order n.

Original entry on oeis.org

1, 2, 5, 9, 19, 25, 46, 62, 89, 109, 164, 188, 266, 308, 368, 432, 568, 622, 793, 873, 999, 1109, 1362, 1458, 1708, 1864, 2107, 2275, 2681, 2801, 3266, 3522, 3852, 4124, 4544, 4760, 5426, 5768, 6236, 6556, 7376, 7628, 8531, 8971, 9511, 10017, 11098, 11482
Offset: 1

Views

Author

Anunay Kulshrestha, Jun 14 2012

Keywords

Examples

			For n = 3, the Farey Sequence is 0/1, 1/3, 1/2, 2/3, 1/1. Thus a(3) = 0 + 1 + 1 + 2 + 1 = 5.
		

Crossrefs

Similar to A133404 and A191607.
Partial sums of A023896.

Programs

  • Maple
    with(numtheory):
    b:= n-> `if`(n=1, 1, n*phi(n)/2):
    a:= proc(n) option remember; b(n) +`if`(n>1, a(n-1), 0) end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Jun 14 2012
  • Mathematica
    Farey[n_] := Union[ Flatten[ Join[{0}, Table[a/b, {b, n}, {a, b}]]]]; Table[ Total[ Numerator[ Farey[ n]]], {n, 0, 53}] (* Robert G. Wilson v, Apr 15 2014 *)
    a[n_] := Sum[If[CoprimeQ[j, k], j, 0], {k, 1, n}, {j, 1, k}]; Table[a[n], {n, 1, 48}] (* Jean-François Alcover, Dec 29 2014 *)
    Table[Total[Numerator[FareySequence[n]]],{n,50}] (* Harvey P. Dale, Apr 21 2025 *)

Formula

a(n) = Sum_{k=1..n} A023896(k).
a(n) = A240877(n)/2. - Robert G. Wilson v, Apr 15 2014
a(n) ~ n^3/Pi^2 - Jean-François Alcover, Dec 29 2014
a(n) = (A011755(n)+1)/2. - Chai Wah Wu, Apr 04 2022

A278046 Let v = list of denominators of Farey series of order n (see A006843); a(n) = sum of products of adjacent terms of v.

Original entry on oeis.org

1, 4, 18, 44, 124, 186, 424, 636, 1038, 1378, 2368, 2852, 4516, 5510, 7030, 8734, 12542, 14168, 19526, 22206, 26658, 30728, 40342, 44190, 54590, 61402, 72328, 80196, 99684, 105644, 129514, 143162, 161422, 176926, 201566, 214538, 255386, 277160, 307736, 329096, 384856, 402412, 466826, 499166
Offset: 1

Views

Author

N. J. A. Sloane, Nov 22 2016

Keywords

Comments

Note that the sum of the reciprocals of these products is 1.

Examples

			When n = 4, v = [1,4,3,2,3,4,1], so a(4) = 1*4 + 4*3 + 3*2 + 2*3 + 3*4 + 4*1 = 44.
		

Crossrefs

Programs

  • Maple
    Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end:
    ans:=[];
    for n from 1 to 50 do
    t1:=denom(Farey(n));
    t2:=add( t1[i]*t1[i+1],i=1..nops(t1)-1);
    ans:=[op(ans),t2];
    od:
    ans;

A278051 Let v = list of denominators of Farey series of order n (see A006843); let b(n) = Sum 1/(k+k'), where (k,k') are pairs of successive terms of v; a(n) = denominator of b(n).

Original entry on oeis.org

2, 3, 10, 35, 252, 2772, 6435, 858, 680680, 12932920, 5290740, 121687020, 1029659400, 3088978200, 582272390700, 18050444111700, 128701918800, 25740383760, 70301729698200, 10043104242600, 109530094869795600, 523310453266801200, 51193413906534900, 481218090721428060
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2016

Keywords

Examples

			The fractions b(n) are 1/2, 2/3, 9/10, 38/35, 347/252, 4189/2772, 11767/6435, 1733/858, 1548081/680680, 31464371/12932920, 14680543/5290740, 353517989/121687020, 3350216417/1029659400, 10571768267/3088978200, ...
		

Crossrefs

Programs

  • Maple
    Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end:
    ans:=[];
    for n from 1 to 30 do
    t1:=denom(Farey(n));
    t2:=add( 1/(t1[i]+t1[i+1]), i=1..nops(t1)-1);
    ans:=[op(ans),t2];
    od:
    ans;
    map(numer,ans); # A278050
    map(denom,ans); # A278051

A278047 Let v = list of denominators of Farey series of order n (see A006843); let b(n) = Sum 1/(k*k'*(k+k')), where (k,k') are pairs of successive terms of v; a(n) = numerator of b(n).

Original entry on oeis.org

1, 1, 7, 4, 37, 53, 707, 85, 179077, 289613, 379721, 641671, 62836087, 35819033, 6367281023, 55181728027, 13442946373, 490167893, 596530310479, 576997238399, 116144361532321, 4931206160615, 164890340129357, 1514840590670747, 10181612956306486603, 3295813969039399097
Offset: 1

Views

Author

N. J. A. Sloane, Nov 22 2016

Keywords

Examples

			The fractions b(n) are 1/2, 1/3, 7/30, 4/21, 37/252, 53/396, 707/6435, 85/858, 179077/2042040, 289613/3527160, 379721/5290740, 641671/9360540, 62836087/1029659400, 35819033/617795640, ...
		

Crossrefs

Programs

  • Maple
    Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end:
    ans:=[];
    for n from 1 to 50 do
    t1:=denom(Farey(n));
    t2:=add( 1/(t1[i]*t1[i+1]*(t1[i]+t1[i+1])),i=1..nops(t1)-1);
    ans:=[op(ans),t2];
    od:
    ans;
    map(numer,ans); # A278047
    map(denom,ans); # A278048

A278048 Let v = list of denominators of Farey series of order n (see A006843); let b(n) = Sum 1/(k*k'*(k+k')), where (k,k') are pairs of successive terms of v; a(n) = denominator of b(n).

Original entry on oeis.org

2, 3, 30, 21, 252, 396, 6435, 858, 2042040, 3527160, 5290740, 9360540, 1029659400, 617795640, 116454478140, 1061790830100, 283144221360, 10644519600, 14060345939640, 14060345939640, 2960272834318800, 130015019445168, 4653946718775900, 43747099156493460
Offset: 1

Views

Author

N. J. A. Sloane, Nov 22 2016

Keywords

Examples

			The fractions b(n) are 1/2, 1/3, 7/30, 4/21, 37/252, 53/396, 707/6435, 85/858, 179077/2042040, 289613/3527160, 379721/5290740, 641671/9360540, 62836087/1029659400, 35819033/617795640, ...
		

Crossrefs

Programs

  • Maple
    Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end:
    ans:=[];
    for n from 1 to 50 do
    t1:=denom(Farey(n));
    t2:=add( 1/(t1[i]*t1[i+1]*(t1[i]+t1[i+1])),i=1..nops(t1)-1);
    ans:=[op(ans),t2];
    od:
    ans;
    map(numer,ans); # A278047
    map(denom,ans); # A278048

A278050 Let v = list of denominators of Farey series of order n (see A006843); let b(n) = Sum 1/(k+k'), where (k,k') are pairs of successive terms of v; a(n) = numerator of b(n).

Original entry on oeis.org

1, 2, 9, 38, 347, 4189, 11767, 1733, 1548081, 31464371, 14680543, 353517989, 3350216417, 10571768267, 2114915577977, 69039991480573, 538250871701, 110983833313, 328448743696081, 48484885139543, 553270527392631611, 2736415713954900433, 286367762285513933, 2754025786313797907
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2016

Keywords

Examples

			The fractions b(n) are 1/2, 2/3, 9/10, 38/35, 347/252, 4189/2772, 11767/6435, 1733/858, 1548081/680680, 31464371/12932920, 14680543/5290740, 353517989/121687020, 3350216417/1029659400, 10571768267/3088978200, ...
		

Crossrefs

Programs

  • Maple
    Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end:
    ans:=[];
    for n from 1 to 30 do
    t1:=denom(Farey(n));
    t2:=add( 1/(t1[i]+t1[i+1]), i=1..nops(t1)-1);
    ans:=[op(ans),t2];
    od:
    ans;
    map(numer,ans); # A278050
    map(denom,ans); # A278051

A278052 Let v = list of denominators of Farey series of order n (see A006843); let b(n) = Sum k*k'/(k+k'), where (k,k') are pairs of successive terms of v; a(n) = numerator of b(n).

Original entry on oeis.org

1, 4, 39, 52, 4069, 8573, 258017, 46639, 53371999, 113518551, 768140741, 1560819091, 242830653007, 169134016817, 38186305937387, 408881289764107, 143220706672837, 41293923006131, 9928250098118791, 10936700271572951, 97615258031147892517, 643700119549549507, 62211198375587838727
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2016

Keywords

Examples

			The fractions b(n) are 1/2, 4/3, 39/10, 52/7, 4069/252, 8573/396, 258017/6435, 46639/858, 53371999/680680, 113518551/1175720, 768140741/5290740, 1560819091/9360540, 242830653007/1029659400, 169134016817/617795640, 38186305937387/116454478140, ...
		

Crossrefs

Cf. A006843, A005728, A240877, A278046-A278051, A278561 (denominators).

Programs

  • Maple
    Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end:
    ans:=[];
    for n from 1 to 30 do
    t1:=denom(Farey(n));
    t2:=add( t1[i]*t1[i+1]/(t1[i]+t1[i+1]), i=1..nops(t1)-1);
    od:
    ans;
    map(numer,ans); # A278052
    map(denom,ans); # A278561

A278561 Let v = list of denominators of Farey series of order n (see A006843); let b(n) = Sum k*k'/(k+k'), where (k,k') are pairs of successive terms of v; a(n) = denominator of b(n).

Original entry on oeis.org

2, 3, 10, 7, 252, 396, 6435, 858, 680680, 1175720, 5290740, 9360540, 1029659400, 617795640, 116454478140, 1061790830100, 283144221360, 74511637200, 14060345939640, 14060345939640, 109530094869795600, 650075097225840, 51193413906534900, 481218090721428060
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2016

Keywords

Examples

			The fractions b(n) are 1/2, 4/3, 39/10, 52/7, 4069/252, 8573/396, 258017/6435, 46639/858, 53371999/680680, 113518551/1175720, 768140741/5290740, 1560819091/9360540, 242830653007/1029659400, 169134016817/617795640, 38186305937387/116454478140, ...
		

Crossrefs

Programs

  • Maple
    Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end:
    ans:=[];
    for n from 1 to 30 do
    t1:=denom(Farey(n));
    t2:=add( t1[i]*t1[i+1]/(t1[i]+t1[i+1]), i=1..nops(t1)-1);
    od:
    ans;
    map(numer,ans); # A278052
    map(denom,ans); # A278561
Showing 1-9 of 9 results.