A241194 Numerator of phi(p-1)/(p-1), where phi is Euler's totient function and p = prime(n).
1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 4, 1, 2, 2, 11, 6, 14, 4, 10, 12, 1, 4, 20, 5, 1, 2, 16, 26, 1, 3, 2, 24, 8, 22, 18, 4, 4, 1, 41, 21, 44, 4, 36, 1, 3, 10, 8, 12, 56, 6, 14, 48, 4, 2, 1, 65, 33, 4, 22, 12, 46, 36, 16, 12, 4, 39, 8, 2, 86, 28, 5, 89, 20, 10, 2, 95
Offset: 1
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 117.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- P. Erdős, On the density of some sequences of numbers, III., J. London Math. Soc. 13 (1938), pp. 119-127.
- Imre Kátai, On distribution of arithmetical functions on the set prime plus one, Compositio Math. 19 (1968), pp. 278-289.
- I. J. Schoenberg, Über die asymptotische Verteilung reeller Zahlen mod 1, Mathematische Zeitschrift 28:1 (1928), pp. 171-199.
Crossrefs
Programs
-
Magma
[Numerator(EulerPhi(NthPrime(n)-1)/(NthPrime(n)-1)): n in [1..80]]; // Vincenzo Librandi, Apr 06 2015
-
Maple
seq(numer(numtheory:-phi(ithprime(i)-1)/(ithprime(i)-1)), i=1..100); # Robert Israel, Jan 11 2015
-
Mathematica
Numerator[Table[EulerPhi[p - 1]/(p - 1), {p, Prime[Range[100]]}]]
-
PARI
lista(nn) = forprime(p=2, nn, print1(numerator(eulerphi(p-1)/(p-1)), ", ")); \\ Michel Marcus, Jan 03 2015
Formula
From Amiram Eldar, Jul 31 2020: (Start)
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{n=1..m} a(n)/A241195(n) = 0.373955... (Artin's constant, A005596).
Comments