A242230 Primes p of the form p^2 + q + 1 where p < q are consecutive primes.
61, 4561, 9511, 17299, 19471, 26737, 30109, 37447, 49957, 69439, 94561, 196699, 209311, 259603, 317539, 333517, 352249, 414097, 427069, 459013, 678157, 845491, 886429, 943819, 1027189, 1217719, 1410163, 1472587, 1647379, 2165323, 2200777, 2230549, 2603389
Offset: 1
Keywords
Examples
a(1) = 61 = 7^2 + 11 + 1: 61 is prime, 7 and 11 are consecutive primes. a(2) = 4561 = 67^2 + 71 + 1: 4561 is prime, 67 and 71 are consecutive primes.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..7040
Programs
-
Maple
with(numtheory): A242230:= proc()local k ; k:=(ithprime(x)^2+ithprime(x+1)+1); if isprime(k) then RETURN (k); fi;end: seq(A242230 (),x=1..500);
-
Mathematica
A242230 = {}; Do[p = Prime[n]^2 + Prime[n + 1] + 1; If[PrimeQ[p], AppendTo[A242230, p]], {n, 500}]; A242230 Select[#[[1]]^2+#[[2]]+1&/@Partition[Prime[Range[300]],2,1],PrimeQ] (* Harvey P. Dale, Mar 28 2016 *)