cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A187646 (Signless) Central Stirling numbers of the first kind s(2n,n).

Original entry on oeis.org

1, 1, 11, 225, 6769, 269325, 13339535, 790943153, 54631129553, 4308105301929, 381922055502195, 37600535086859745, 4070384057007569521, 480544558742733545125, 61445535102359115635655, 8459574446076318147830625, 1247677142707273537964543265, 196258640868140652967646352465
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Comments

Number of permutations with n cycles on a set of size 2n.

Crossrefs

Programs

  • Maple
    seq(abs(Stirling1(2*n,n)), n=0..20);
  • Mathematica
    Table[Abs[StirlingS1[2n, n]], {n, 0, 12}]
    N[1 + 1/(2 LambertW[-1, -Exp[-1/2]/2]), 50] (* The constant z in the asymptotic - Vladimir Reshetnikov, Oct 08 2016 *)
  • Maxima
    makelist(abs(stirling1(2*n,n)),n,0,12);
    
  • PARI
    for(n=0,50, print1(abs(stirling(2*n, n, 1)), ", ")) \\ G. C. Greubel, Nov 09 2017

Formula

Asymptotic: a(n) ~ (2*n/(e*z*(1-z)))^n*sqrt((1-z)/(2*Pi*n*(2z-1))), where z=0.715331862959... is a root of the equation z = 2*(z-1)*log(1-z). - Vaclav Kotesovec, May 30 2011
Equivalent: a(n) ~ n!*(2*r^2/(r-1))^n/(2*Pi*n*sqrt(r-2)), where r=A226278. - Natalia L. Skirrow, Jul 13 2025
From Seiichi Manyama, May 20 2025: (Start)
a(n) = A132393(2*n,n).
a(n) = (2*n)! * [x^(2*n)] (-log(1 - x))^n / n!. (End)

A237993 a(n) = |Stirling1(3*n,n)|.

Original entry on oeis.org

1, 2, 274, 118124, 105258076, 159721605680, 369012649234384, 1206647803780373360, 5304713715525445812976, 30180059720580991603896800, 215760462268683520394805979744, 1893448925578239663637174767335168, 20012008248418194052035539503977759232
Offset: 0

Views

Author

Vaclav Kotesovec, May 20 2014

Keywords

Crossrefs

Programs

  • Maple
    seq(abs(Stirling1(3*n,n)), n=0..20);
  • Mathematica
    Table[Abs[StirlingS1[3*n, n]],{n,0,20}]

Formula

a(n) ~ n^(2*n) * c^(3*n) * 3^(5*n) / (sqrt(6*Pi*(c-1)*n) * exp(2*n) * (3*c-1)^(2*n)), where c = -LambertW(-1,-exp(-1/3)/3) = 2.237147027773716818...
From Seiichi Manyama, May 20 2025: (Start)
a(n) = A132393(3*n,n).
a(n) = (3*n)! * [x^(3*n)] (-log(1 - x))^n / n!. (End)

A384130 Number of permutations of 4*n objects with exactly 3*n cycles.

Original entry on oeis.org

1, 6, 322, 32670, 4899622, 973941900, 241276443496, 71603372991150, 24764667228756390, 9781650150525639540, 4344363139637533397580, 2143082171052546774398348, 1162585907585797437278546956, 687872810620417599693839111880, 440840269604491448260396623711300
Offset: 0

Views

Author

Seiichi Manyama, May 20 2025

Keywords

Comments

In general, for m>=1, abs(Stirling1((m+1)*n, m*n)) ~ (m+1)^((m+2)*n - 1/2) * w(m)^((m+1)*n) * n^(n - 1/2) / (sqrt(2*Pi*(w(m)-1)) * exp(n) * m^(m*n) * ((m+1)*w(m) - m)^n), where w(m) = -LambertW(-1, -m*exp(-m/(m+1))/(m+1)). - Vaclav Kotesovec, May 23 2025

Crossrefs

Programs

  • Magma
    [&+[Abs(StirlingFirst(4*n, 3*n))]: n in [0..15]]; // Vincenzo Librandi, May 21 2025
  • Mathematica
    a[n_]:=Abs[StirlingS1[4 n,3 n]] Table[a[n],{n,0,15}] (* Vincenzo Librandi, May 21 2025 *)
  • PARI
    a(n) = abs(stirling(4*n, 3*n, 1));
    

Formula

a(n) = A132393(4*n,3*n) = |Stirling1(4*n,3*n)|.
a(n) = (4*n)! * [x^(4*n)] (-log(1 - x))^(3*n) / (3*n)!.
a(n) ~ 2^(10*n - 3/2) * n^(n - 1/2) * w^(4*n) / (sqrt(Pi*(w-1)) * 3^(3*n) * exp(n) * (4*w-3)^n), where w = -LambertW(-1, -3*exp(-3/4)/4) = 1.3002007416590685881... - Vaclav Kotesovec, May 23 2025
Showing 1-3 of 3 results.