cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242774 a(n) = ceiling( n / 2 ) + ceiling( n / 3 ).

Original entry on oeis.org

2, 2, 3, 4, 5, 5, 7, 7, 8, 9, 10, 10, 12, 12, 13, 14, 15, 15, 17, 17, 18, 19, 20, 20, 22, 22, 23, 24, 25, 25, 27, 27, 28, 29, 30, 30, 32, 32, 33, 34, 35, 35, 37, 37, 38, 39, 40, 40, 42, 42, 43, 44, 45, 45, 47, 47, 48, 49, 50, 50, 52, 52, 53, 54, 55, 55, 57
Offset: 1

Views

Author

Michael Somos, May 22 2014

Keywords

Examples

			G.f. = 2*x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 5*x^6 + 7*x^7 + 7*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(2+2*x+x^2)/(1-x^2-x^3+x^5)));  // G. C. Greubel, Aug 06 2018
  • Maple
    A242774:=n->ceil(n/2)+ceil(n/3): seq(A242774(n), n=1..100); # Wesley Ivan Hurt, Apr 13 2016
  • Mathematica
    a[ n_] := Ceiling[ n / 2 ] + Ceiling[ n / 3 ];
    LinearRecurrence[{0, 1, 1, 0, -1}, {2, 2, 3, 4, 5}, 100] (* Vincenzo Librandi, Apr 15 2016 *)
    Rest[CoefficientList[Series[x*(2+2*x+x^2)/(1-x^2-x^3+x^5), {x, 0, 50}], x]] (* G. C. Greubel, Aug 06 2018 *)
  • PARI
    {a(n) = ceil( n / 2 ) + ceil( n / 3 )};
    
  • PARI
    {a(n) = if( n<0, polcoeff( -(x^2 + 2*x^3 + 2*x^4) / ((1 - x^2) * (1 - x^3)) + x * O(x^-n), -n), polcoeff( (2*x + 2*x^2 + x^3) / ((1 - x^2) * (1 - x^3)) + x * O(x^n), n))};
    

Formula

G.f.: x * (2 + 2*x + x^2) / (1 - x^2 - x^3 + x^5) = (2*x + 2*x^2 + x^3) / ((1 - x^2) * (1 - x^3)).
a(n) = - A010761(-n) = 2 - a(1-n). a(n) = A002789(n) - A002789(n-1) for all n in Z.
a(n) = Sum_{k=1..n} A000035(k) + A000035(A010872(k)). - Benedict W. J. Irwin, Apr 13 2016
E.g.f.: 5*x*exp(x)/6 - exp(-x)/4 + 7*exp(x)/12 + sin(sqrt(3)*x/2)*exp(-x/2)/(3*sqrt(3)) - cos(sqrt(3)*x/2)*exp(-x/2)/3. - Ilya Gutkovskiy, Apr 13 2016