cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A243756 Triangle read by rows: T(n,k) = A242954(n)/(A242954(k) * A242954(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 4, 4, 4, 1, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4, 1
Offset: 0

Views

Author

Tom Edgar, Jun 09 2014

Keywords

Comments

The exponent of T(n,k) is the number of 'carries' that occur when adding k and n-k in base 4 using the traditional addition algorithm.
If T(n,k) != 0 mod 4, then n dominates k in base 4.

Examples

			The triangle begins:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 4, 4, 4, 1;
1, 1, 4, 4, 1, 1;
1, 1, 1, 4, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1;
1, 4, 4, 4, 1, 4, 4, 4, 1;
1, 1, 4, 4, 1, 1, 4, 4, 1, 1;
1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Programs

  • Sage
    m=50
    T=[0]+[4^valuation(i, 4) for i in [1..m]]
    Table=[[prod(T[1:i+1])/(prod(T[1:j+1])*prod(T[1:i-j+1])) for j in [0..i]] for i in [0..m-1]]
    [x for sublist in Table for x in sublist]

Formula

T(n,k) = A242954(n)/(A242954(k) * A242954(n-k)).
T(n,k) = Product_{i=1..n} A234957(i)/(Product_{i=1..k} A234957(i)*Product_{i=1..n-k} A234957(i)).
T(n,k) = A234957(n)/n*(k/A234957(k)*T(n-1,k-1)+(n-k)/A234957(n-k)*T(n-1,k)).

A243757 a(n) = Product_{i=1..n} A060904(i).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, 25, 25, 25, 25, 125, 125, 125, 125, 125, 625, 625, 625, 625, 625, 15625, 15625, 15625, 15625, 15625, 78125, 78125, 78125, 78125, 78125, 390625, 390625, 390625, 390625, 390625, 1953125, 1953125, 1953125, 1953125, 1953125, 9765625
Offset: 0

Views

Author

Tom Edgar, Jun 10 2014

Keywords

Comments

This is the generalized factorial for A060904.
a(0) = 1 as it represents the empty product.
a(n) is the largest power of 5 that divides n!, or the order of a 5-Sylow subgroup of the symmetric group of degree n. - David Radcliffe, Sep 03 2021

Crossrefs

Programs

  • Haskell
    a243757 n = a243757_list !! n
    a243757_list = scanl (*) 1 a060904_list
    -- Reinhard Zumkeller, Feb 04 2015
    
  • Mathematica
    Table[Product[5^IntegerExponent[k, 5], {k, 1, n}], {n, 0, 20}] (* G. C. Greubel, Dec 24 2016 *)
  • PARI
    a(n) = prod(k=1,n, 5^valuation(k,5)); \\ G. C. Greubel, Dec 24 2016
  • Sage
    S=[0]+[5^valuation(i, 5) for i in [1..100]]
    [prod(S[1:i+1]) for i in [0..99]]
    

Formula

a(n) = Product_{i=1..n} A060904(i).
a(n) = 5^(A027868(n)).

A243758 a(n) = Product_{i=1..n} A234959(i).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 6, 36, 36, 36, 36, 36, 36, 216, 216, 216, 216, 216, 216, 1296, 1296, 1296, 1296, 1296, 1296, 7776, 7776, 7776, 7776, 7776, 7776, 279936, 279936, 279936, 279936, 279936, 279936, 1679616, 1679616, 1679616, 1679616, 1679616, 1679616, 10077696
Offset: 0

Views

Author

Tom Edgar, Jun 10 2014

Keywords

Comments

This is the generalized factorial for A234959.
a(0) = 1 as it represents the empty product.

Crossrefs

Programs

  • Haskell
    a243758 n = a243758_list !! n
    a243758_list = scanl (*) 1 a234959_list
    -- Reinhard Zumkeller, Feb 09 2015
    
  • Mathematica
    Table[Product[6^IntegerExponent[k, 6], {k, 1, n}], {n, 0, 20}] (* G. C. Greubel, Dec 24 2016 *)
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    a(n)=6^valp(n,6) \\ Charles R Greathouse IV, Oct 03 2016
  • Sage
    S=[0]+[6^valuation(i,6) for i in [1..100]]
    [prod(S[1:i+1]) for i in [0..99]]
    

Formula

a(n) = Product_{i=1..n} A234959(i).
a(n) = 6^(A054895(n)).

A087069 a(n) = Sum_{k >= 0} floor(n/(4^k)).

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 85, 86, 87, 88, 90, 91, 92, 93
Offset: 0

Views

Author

Clark Kimberling, Aug 07 2003

Keywords

Examples

			a(4) = 4 + floor(4/4) + floor(4/16) + floor(4/64) + ... = 5.
		

Crossrefs

Essentially partial sums of A115362.

Programs

  • Haskell
    import Data.List (unfoldr)
    a087069 =
       sum . unfoldr (\x -> if x == 0 then Nothing else Just (x, x `div` 4))
    -- Reinhard Zumkeller, Apr 22 2011
    
  • Mathematica
    Table[Sum[Floor[n/4^k], {k, 0, 1000}], {n, 0, 50}] (* G. C. Greubel, Oct 11 2017 *)
  • PARI
    for(n=0,50, print1(sum(k=0,1000, floor(n/4^k)), ", ")) \\ G. C. Greubel, Oct 11 2017

Formula

a(n) = Sum_{k>=0} A030308(n,k)*A000975(k+1). - Philippe Deléham, Oct 16 2011
a(n) = A054893(4*n). - Vaclav Kotesovec, May 28 2014
G.f.: (1/(1 - x))*Sum_{k>=0} x^(4^k)/(1 - x^(4^k)). - Ilya Gutkovskiy, Mar 15 2018
Showing 1-4 of 4 results.