cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A244327 a(n) = floor((n*(n+1)/2) / sigma(n)) = floor(A000217(n) / A000203(n)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 5, 2, 6, 4, 5, 4, 8, 4, 9, 5, 7, 7, 11, 5, 10, 8, 9, 7, 14, 6, 15, 8, 11, 11, 13, 7, 18, 12, 13, 9, 20, 9, 21, 11, 13, 15, 23, 9, 21, 13, 18, 14, 26, 12, 21, 13, 20, 19, 29, 10, 30, 20, 19, 16, 25, 15, 33, 18, 25, 17, 35, 13, 36
Offset: 1

Views

Author

Jaroslav Krizek, Jul 08 2014

Keywords

Comments

RECORD transform of a(n) is A140475 (union of number 1 and primes >= 5).
Sequence of numbers n such that a(n) = a(n+1) = A244666.

Examples

			For n = 10; a(10) = floor(A000217(10) / A000203(10)) = floor(55 / 18) = 3.
		

Crossrefs

Programs

  • Magma
    [Floor((n*(n+1)div 2) div (SumOfDivisors(n))): n in [1..1000]];
  • Maple
    a:= n-> floor(n*(n+1)/(2*numtheory[sigma](n))):
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 28 2018
  • Mathematica
    A244327[n_] := Floor[n*(n + 1)/(2*DivisorSigma[1, n])];
    Array[A244327, 100] (* Paolo Xausa, Sep 01 2024 *)

Formula

a(n) = A244328(n) + A244329(n) for n >= 7.

A244328 a(1) = a(2) = 0; for n >= 3: a(n) = floor((n*(n+1)/2) / antisigma(n)) = floor(A000217(n) / A024816(n)).

Original entry on oeis.org

0, 0, 3, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Jaroslav Krizek, Jul 08 2014

Keywords

Comments

Decimal expansion of 29809/900000. - Stefano Spezia, Sep 02 2024

Examples

			For n = 10; a(10) = floor(A000217(10) / A024816(10)) = floor(55 / 37) = 1.
		

Crossrefs

Programs

  • Magma
    [Floor((n*(n+1)div 2) div ((n*(n+1)div 2)-SumOfDivisors(n))): n in [3..1000]];
    
  • Mathematica
    PadRight[{0, 0, 3, 3, 1, 2}, 100, 1] (* Paolo Xausa, Sep 01 2024 *)
  • PARI
    if(n>6,1,[0, 0, 3, 3, 1, 2][n]) \\ Charles R Greathouse IV, May 15 2015

Formula

a(n) = 1 for n >= 7.
a(n) = A244327(n) - A244329(n) for n >= 7.
G.f.: x^3*(3 - 2*x^2 + x^3 - x^4)/(1 - x). - Elmo R. Oliveira, Aug 03 2024
E.g.f.: exp(x) - x - 1 + x^2*(x^4 + 60*x^2 + 240*x - 360)/720. - Stefano Spezia, Sep 02 2024

A244666 Numbers n such that floor(antisigma(n) / sigma(n)) = floor(antisigma(n+1) / sigma(n+1)).

Original entry on oeis.org

1, 2, 3, 9, 21, 33, 81, 261, 897, 1334, 1364, 2974, 4364, 14282, 26937, 46593, 64665, 74918, 79833, 92685, 145215, 147454, 161001, 162602, 166934, 289454, 347738, 383594, 422073, 430137, 440013, 443402, 445874, 621027, 649154, 655005, 1174305, 1187361, 1670955
Offset: 1

Views

Author

Jaroslav Krizek, Jul 08 2014

Keywords

Comments

Also numbers n such that floor((n*(n+1)/2) / sigma(n)) = floor(((n+1)*(n+2)/2) / sigma(n+1)).
Numbers n such that A244327(n) = A244327(n+1).
Numbers n such that A244329(n) = A244329(n+1).

Crossrefs

Programs

  • Magma
    [n: n in [1..10^6] | Floor((n*(n+1)div 2) div (SumOfDivisors(n))) eq Floor(((n+1)*(n+2)div 2) div (SumOfDivisors(n+1)))]

A244926 Numbers m such that there is an integer k with the property that antisigma(m) = k * sigma(m) + k.

Original entry on oeis.org

1, 2, 247, 2279, 9167, 57479, 200479, 518039, 2119207, 3685439, 9240079, 16384279, 31536647, 101601359, 140558807, 189771287, 299142967, 354032447, 384150199, 486103279, 565468637, 802008239, 853795074, 1107541759, 1328438479, 1494742004, 1580837719, 1768013279
Offset: 1

Views

Author

Jaroslav Krizek, Jul 08 2014

Keywords

Comments

Numbers m such that A244329(m) = floor(antisigma(m) / sigma(m)) = antisigma(m) mod sigma(m) = A232324(n).
Corresponding values of integers k: 0, 0, 108, 1092, 4488, 28500, 99792, 258300, 1058148, ...
Numbers m such that sigma(m) + 1 divides antisigma(m). - Kevin P. Thompson, Nov 27 2021

Examples

			247 is in sequence because 30348 = antisigma(247) = 108 * sigma(247) + 108 = 108*280 + 108.
		

Crossrefs

Cf. A024816 (antisigma), A000203 (sigma), A244329, A232324.

Programs

  • Magma
    [n: n in [1..100000] | Floor(((n*(n+1)div 2) - (SumOfDivisors(n))) div (SumOfDivisors(n))) eq ((n*(n+1)div 2) - (SumOfDivisors(n))) mod (SumOfDivisors(n))]
    
  • PARI
    isok(m) = my(s=sigma(m)); denominator((m*(m+1)/2-s)/(s+1)) == 1; \\ Michel Marcus, Jan 21 2022

Extensions

a(10)-a(28) from Kevin P. Thompson, Nov 27 2021
Showing 1-4 of 4 results.