A081436 Fifth subdiagonal in array of n-gonal numbers A081422.
1, 7, 24, 58, 115, 201, 322, 484, 693, 955, 1276, 1662, 2119, 2653, 3270, 3976, 4777, 5679, 6688, 7810, 9051, 10417, 11914, 13548, 15325, 17251, 19332, 21574, 23983, 26565, 29326, 32272, 35409, 38743, 42280, 46026, 49987, 54169, 58578, 63220
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Christian Barrientos, The number of spanning trees of cyclic snakes, Indones. J. Comb. (2025) Vol. 9, No. 1, 21-30. See p. 29.
- J. A. Dias da Silva and Pedro J. Freitas, Counting Spectral Radii of Matrices with Positive Entries, arXiv:1305.1139 [math.CO], 2013.
- Theorem of the Day, Lovász Local Lemma example involving intersecting pairs of multisets
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
List([0..40], n-> (n+1)*(2*(n+1)^2-n)/2); # G. C. Greubel, Aug 14 2019
-
Magma
[(2*n^3+5*n^2+5*n+2)/2: n in [0..40]]; // Vincenzo Librandi, Jul 19 2011
-
Maple
A081436 := proc(n) (n+1)*(2*n^2+3*n+2)/2 ; end proc: seq(A081436(n),n=0..60) ; # R. J. Mathar, Jun 26 2013
-
Mathematica
LinearRecurrence[{4, -6, 4, -1}, {1, 7, 24, 58}, 40] (* Jean-François Alcover, Sep 21 2017 *)
-
PARI
a(n)=n^3+5/2*n*(n+1)+1 \\ Charles R Greathouse IV, Jun 20 2013
-
Sage
[(n+1)*(2*(n+1)^2-n)/2 for n in (0..40)] # G. C. Greubel, Aug 14 2019
Formula
a(n) = (n+1)*(2*n^2 + 3*n + 2)/2.
a(n) = A110449(n, n-1), for n>1.
a(n) = (n+1)*T(n+1) + n*T(n), where T( ) are triangular numbers. Binomial transform of [1, 6, 11, 6, 0, 0, 0, ...]. - Gary W. Adamson, Dec 28 2007
E.g.f.: exp(x)*(2 + 12*x + 11*x^2 + 2*x^3)/2. - Stefano Spezia, Apr 13 2021
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Apr 14 2021
Extensions
G.f. simplified and crossrefs added by Johannes W. Meijer, Mar 07 2009
Comments