cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A116017 Numbers m such that m + sigma(m) is a repdigit.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 34, 141, 198, 277, 297, 375, 499, 1420, 2651, 2777, 3554, 4999, 19050, 28660, 29128, 49999, 131061, 506311, 3844863, 3852517, 4761903, 4999999, 22222218, 37560831, 133878933, 506767303, 872011214, 1381799253, 1427435733, 2777777777, 3018915632, 3555555554
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Comments

From Farideh Firoozbakht, Aug 17 2006: (Start)
(1) If p=(10^(3n+2)-19)/27 is a prime greater than 3 then m=6p is in the sequence because m+sigma(m)=6*(10^(3n+2)-1)/9 (the proof is easy), so m+sigma(m) is a repdigit number. The smallest such terms is 22222218, the next such term is 6*(10^(3*430+2)-1)/9=222...218 which has 1292 digits.
(2) If p=5*10^n-1 is prime then p is in the sequence because p+sigma(p)=10^(n+1)-1, so p+sigma(p) is a repdigit number. 499, 49999, 4999999,... are such terms.
(3) If p=(25*10^(n-1)-7)/9 is prime then p is in the sequence because p+sigma(p)=5*(10^n-1)/9, so p+sigma(p) is a repdigit number. 2, 277, 2777, 2777777777, ... are such terms.
(4) If p=(16*10^(n-1)-7)/9 is prime then m=2p is in the sequence because m+sigma(m)=8*(10^n-1) /9, so m+sigma(m) is a repdigit number. 34, 3554, 3555555554, ... are such terms. (End)

Examples

			22222218 + sigma(22222218) = 66666666.
		

Crossrefs

Contains A244444 as subsequence.

Programs

  • Mathematica
    Do[If[Length[Union[IntegerDigits[n + DivisorSigma[1, n]]]]==1, Print[n]], {n, 60000000}] (* Farideh Firoozbakht, Aug 17 2006 *)
  • PARI
    for(n=1, 10^7, d=digits(sigma(n)+n); c=0; for(i=1, #d-1, if(d[i]!=d[i+1], c++; break)); if(c==0, print1(n, ", "))) \\ Derek Orr, Aug 01 2014
    
  • Python
    from sympy import divisors
    A116017 = [n for n in range(1,10**5) if len(set(str(n+sum(divisors(n))))) == 1] # Chai Wah Wu, Aug 11 2014

Extensions

More terms from Farideh Firoozbakht, Aug 17 2006, Dec 19 2007
a(36)-a(37) from Donovan Johnson, Feb 17 2013
a(38) from Farideh Firoozbakht, Aug 01 2014

A309835 Numbers k such that k + phi(k) is a repunit.

Original entry on oeis.org

5798663, 5555564201311, 5555574497311, 5555593942711, 66815976110703, 69437045907973255623
Offset: 1

Views

Author

Giovanni Resta, Aug 19 2019

Keywords

Comments

Also in the sequence is 555555555555555555555556288388841217550575591423513701223. - Robert Israel, Aug 20 2019
The number 5975946235638859341313216528710061511 is also in the sequence. - Daniel Suteu, Aug 22 2019

Examples

			5798663 is a terms since phi(5798663) = 5312448 and 5798663 + 5312448 = 11111111.
		

Crossrefs

Subsequence of A116018.

Programs

  • PARI
    isok(k) = my(d=digits(k+eulerphi(k))); vecmin(d)==1 && vecmax(d)==1; \\ Daniel Suteu, Aug 22 2019

Extensions

a(5) from Daniel Suteu confirmed by Max Alekseyev, Oct 25 2023
a(6) from Max Alekseyev, Nov 30 2023

A291373 a(n) is the smallest number k such that A001065(k) = A002110(n), or 0 if no such k exists.

Original entry on oeis.org

2, 0, 6, 841, 0, 1722, 30018, 0, 0, 0, 4057230930, 0, 0, 92568222856376123089883329681
Offset: 0

Views

Author

Altug Alkan, Aug 23 2017

Keywords

Comments

For n in A057704, 0 < a(n) <= (A002110(n)-1)^2. - Max Alekseyev, Sep 01 2025

Examples

			a(5) = 1722 because sigma(1722) - 1722 = 2*3*5*7*11 = A002110(5) and 1722 is the least number with this property.
		

Crossrefs

Formula

a(n) = A070015(A002110(n)). - Michel Marcus, Aug 25 2017

Extensions

a(7) and a(10) from Giovanni Resta, Aug 23 2017
a(8)-a(9), a(11)-a(13) from Max Alekseyev, Sep 04 2025
Showing 1-3 of 3 results.