cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A116018 Numbers n such that n + phi(n) is a repdigit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 17, 21, 63, 167, 201, 389, 603, 1667, 3795, 3889, 4465, 5926, 50394, 166667, 510042, 2000001, 3888889, 5185194, 5798663, 5925926, 6000003, 32050435, 200000001, 335447667, 365110755, 444766346, 600000003, 1558138862, 1565408702, 1587424430
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Comments

(I). If p=(2*10^(3n+1)+7)/27 is prime then m=2p is in the sequence because m+phi(m)=3p-1=2*(10^(3n+1)-1)/9 is a repdigit number. m=2*(2*10^811+7)/27 (a 811-digit number) is the smallest such terms and the next such terms has 4219 digits. - Farideh Firoozbakht, Aug 24 2006
(II). If p=(8*10^(3n+1)+1)/27 is prime then m=2p is in the sequence because m+phi(m)=8*(10^(3n+1)-1)/9 is a repdigit number. 5926 is the smallest such terms. - Farideh Firoozbakht, Aug 24 2006
(III). If p=(2*10^n+1)/3 then both numbers 3p & 9p are in the sequence because 3p+phi(3p)=5p-2=3*(10^(n+1)-1)/9 & 9p+ phi(9p)=9*(10^(n+1)-1)/9 are repdigit numbers. 21 & 63 are the smallest such terms. - Farideh Firoozbakht, Aug 24 2006
(IV). All primes p of the form (35*10^n+1)/9 are in the sequence because p+phi(p)=7*(10^n-1)/9 is a repdigit number. 389 is the smallest such terms. - Farideh Firoozbakht, Aug 24 2006
(V). All primes p of the form (10^n+2)/6 are in the sequence because p+phi(p)=2p-1=3*(10^n-1)/9 is a repdigit number. 2, 17 & 167 are such terms. - Farideh Firoozbakht, Aug 24 2006, Dec 19 2007

Examples

			5185194 + phi(5185194) = 6666666.
		

Crossrefs

Programs

  • PARI
    for(n=1,10^9,d=digits(n+eulerphi(n));if(vecmin(d)==vecmax(d),print1(n,", "))) \\ Derek Orr, Aug 11 2014
  • Python
    from sympy import totient
    A116018 = [n for n in range(1,10**6) if len(set(str(n+totient(n)))) == 1] # Chai Wah Wu, Aug 11 2014
    

Extensions

More terms from Farideh Firoozbakht, Aug 24 2006
a(35)-a(36) from Donovan Johnson, Feb 19 2013

A116001 sigma(n) - phi(n) gives a semiprime (A001358).

Original entry on oeis.org

6, 10, 18, 20, 22, 27, 34, 40, 49, 52, 58, 64, 68, 82, 98, 100, 118, 136, 142, 144, 148, 160, 162, 164, 202, 212, 214, 242, 243, 244, 274, 288, 289, 298, 320, 325, 333, 338, 343, 356, 358, 361, 382, 392, 394, 404, 436, 441, 454, 464, 478, 512, 538, 544, 548
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Examples

			sigma(100)-phi(100)=177=3*59
		

Crossrefs

Programs

  • Mathematica
    Select[Range[600],PrimeOmega[DivisorSigma[1,#]-EulerPhi[#]]==2&] (* Harvey P. Dale, Mar 18 2013 *)

A116019 Numbers k such that sigma(k) + phi(k) is a repdigit.

Original entry on oeis.org

1, 2, 3, 4, 10, 11, 21, 49, 186, 207, 221, 342, 406, 3324, 4443, 33324, 43375, 222221, 314000, 344032, 389924, 414806, 987652, 2222221, 190476186, 222087442, 222222221, 422720878, 2222222221, 4444444443
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Comments

(1). If m=(2*10^n-11)/9 is product of two distinct primes then m is in the sequence because phi(m)+sigma(m)=phi(p*q)+sigma(p*q)=2(p*q+1)=2m+2=4*(10^n-1)/9, so phi(m)+sigma(m) is a repdigit number. 21, 221, 222221, 2222221, 222222221,... are such terms. - Farideh Firoozbakht, Aug 17 2006
(2). If m=(4*10^n-13)/9 is product of two distinct primes then m is in the sequence because phi(m)+sigma(m)=phi(p*q)+sigma(p*q)=2(p*q+1)=2m+2=8*(10^n-1)/9, so phi(m)+sigma(m) is a repdigit number. 4443, 4444444443, 44444444443,... are such terms. - Farideh Firoozbakht, Aug 17 2006
(3). If p=(25*10^(n-1)-7)/9 is an odd prime then m=12*p is in the sequence because phi(m)+sigma(m)=32p+24=8*(10^(n+1)-1)/9 so phi(m)+sigma(m) is a repdigit number. 3324, 33324, 33333333324,... are such terms. - Farideh Firoozbakht, Aug 17 2006
(4). If n is a nonnegative integer and p=(8*10^(3n+2)-17)/27 is prime then m=14*p is in the sequence because phi(m)+sigma(m)=30p+18=8*(10^(3n+3)-1)/9 is a repdigit number. 406, 414806, 414814814814814814814806, ... are such terms of the sequence. - Farideh Firoozbakht, Aug 01 2014

Examples

			sigma(314000)+phi(314000)=888888.
		

Crossrefs

Programs

  • Mathematica
    Do[If[Length[Union[IntegerDigits[EulerPhi[n] + DivisorSigma[1, n]]]]==1, Print[n]], {n, 280000000}] (* Farideh Firoozbakht, Aug 17 2006 *)
  • PARI
    for(n=1,10^7,d=digits(sigma(n)+eulerphi(n));c=0;for(i=1,#d-1,if(d[i]!=d[i+1],c++;break));if(c==0,print1(n,", "))) \\ Derek Orr, Aug 01 2014

Extensions

3 more terms from Farideh Firoozbakht, Aug 17 2006
a(28)-a(30) from Donovan Johnson, Jan 16 2012

A244444 Numbers n such that n+sigma(n) is a repunit number.

Original entry on oeis.org

4, 5, 506311, 4761903, 506767303, 5517762660583, 5554746531623, 5555541480743, 5458110152757191
Offset: 1

Views

Author

Farideh Firoozbakht, Aug 01 2014

Keywords

Comments

The numbers 47379454926624737751 and 546139199807860751551844463475591 belong to this sequence. - Giovanni Resta, Aug 17 2019
Also in the sequence is 38808343270779723425176258917550576371890625326889683884600092615. - Daniel Suteu, Aug 23 2019

Examples

			sigma(4761903)+4761903 = 11111111.
		

Crossrefs

Subsequence of A116017.
Cf. A309835.

Programs

  • PARI
    for(n=1, 10^10, d=digits(sigma(n)+n); if(vecmax(d)==1&&vecmin(d)==1, print1(n, ", "))) \\ Derek Orr, Aug 02 2014
    
  • Python
    from sympy import divisors
    [n for n in range(1,10**6) if len(set(str(n+sum(divisors(n))))) == 1 and str(n+sum(divisors(n)))[0] == '1'] # Chai Wah Wu, Aug 04 2014

Extensions

a(5) from Hiroaki Yamanouchi, Aug 26 2014
a(6)-a(8) from Giovanni Resta, Aug 17 2019
a(9) from Daniel Suteu confirmed by Max Alekseyev, May 23 2025

A116020 Numbers n such that sigma(n) - phi(n) is a repdigit greater than 2.

Original entry on oeis.org

4, 8, 9, 18, 25, 27, 28, 57, 62, 85, 123, 192, 218, 258, 259, 261, 322, 403, 632, 662, 693, 1127, 2195, 2218, 2321, 2658, 3548, 4577, 4763, 5597, 5603, 5921, 6662, 7421, 7697, 9617, 9683, 10721, 10877, 11537, 12317, 13323, 17243, 18659, 23363, 26483
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Comments

For every prime p sigma(p)-phi(p) is 2, so that case is trivial.
(I). If both numbers p=4*10^n+1 & q=(4*10^n-13)/9 are primes then m=p*q is in the sequence because sigma(m)-phi(m)=8*(10^(n+1)-1)/9 is a repdigit number. Conjecture: 123, 17243 & 1772443 are all such terms. - Farideh Firoozbakht, Aug 24 2006
(II). If p=(10^n-7)/3 is prime then m=2p is in the sequence because sigma(m)-phi(m)=2p+4=6*(10^n-1)/9 is a repdigit number. 62 is the smallest such terms. - Farideh Firoozbakht, Aug 24 2006
(III). If p=(4*10^n-31)/9 is prime then m=3p is in the sequence because sigma(m)-phi(m)=2p+6=8*(10^n-1)/9 is a repdigit number. 123 is the smallest such terms. - Farideh Firoozbakht, Aug 24 2006
(IV). If p=(8*10^n-17)/9 is a prime then both numbers 4p & 46p are in the sequence because sigma(4p)-phi(4p)=5p+9=4*(10^(n+1)-1)/9 & sigma(46p)-phi(46p)=50p+94=4*(10^(n+2)-1)/9 are repdigit numbers. 28 & 322 are the smallest such terms. - Farideh Firoozbakht, Aug 24 2006
(V). If p=(4*10^n-13)/9 is a prime greater than 3 then m=6p is in the sequence because sigma(m)-phi(m)=10p+14=4*(10^(n+1)-1)/9 is a repdigit number. 258 is the smallest such terms. - Farideh Firoozbakht, Aug 24 2006
(VI). If p=(8*10^(2n+1)-179)/99 is prime then m=8p is in the sequence because sigma(m)-phi(m)=11p+19=8*(10^(2n+1)-1)/9 is a repdigit number. 632 is the smallest such terms. - Farideh Firoozbakht, Aug 24 2006
(VII). If p=(10^(3n+1)-37)/27 is prime then m=12p is in the sequence because sigma(m)-phi(m)=24p+32=8*(10^(3n+1)-1)/9 is a repdigit number. 4444444428 is the smallest such terms. - Farideh Firoozbakht, Aug 24 2006

Examples

			sigma(662) - phi(662) = 666.
		

Crossrefs

A116028 Numbers k such that k + sigma(k) + sigma(sigma(k)) is a repdigit.

Original entry on oeis.org

1, 2, 15, 25, 119, 157, 2413, 2623, 8415, 14962, 18303, 66078, 1031747, 62826675, 692799137, 759500195, 1144100379
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Comments

a(18) > 5*10^9. - Donovan Johnson, Feb 18 2013

Examples

			1031747 + sigma(1031747) + sigma(sigma(1031747)) = 5555555.
		

Crossrefs

Programs

  • Mathematica
    repQ[n_]:=Module[{ds=DivisorSigma[1,n]},Count[DigitCount[n+ds+ DivisorSigma[ 1,ds]],0] == 9]; Select[Range[66100],repQ] (* The program generates the first 12 terms of the sequence. To generate more, increase the Range constant, but it will take a long time to run. *) (* Harvey P. Dale, Oct 08 2020 *)

Extensions

a(14)-a(17) from Donovan Johnson, Feb 18 2013

A291373 a(n) is the smallest number k such that A001065(k) = A002110(n), or 0 if no such k exists.

Original entry on oeis.org

2, 0, 6, 841, 0, 1722, 30018, 0, 0, 0, 4057230930, 0, 0, 92568222856376123089883329681
Offset: 0

Views

Author

Altug Alkan, Aug 23 2017

Keywords

Comments

For n in A057704, 0 < a(n) <= (A002110(n)-1)^2. - Max Alekseyev, Sep 01 2025

Examples

			a(5) = 1722 because sigma(1722) - 1722 = 2*3*5*7*11 = A002110(5) and 1722 is the least number with this property.
		

Crossrefs

Formula

a(n) = A070015(A002110(n)). - Michel Marcus, Aug 25 2017

Extensions

a(7) and a(10) from Giovanni Resta, Aug 23 2017
a(8)-a(9), a(11)-a(13) from Max Alekseyev, Sep 04 2025
Showing 1-7 of 7 results.