cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A143433 Expansion of f(-x, x^3) in powers of x where f(,) is Ramanujan's general theta function.

Original entry on oeis.org

1, -1, 0, 1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Aug 14 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + x^3 - x^6 - x^10 + x^15 - x^21 + x^28 + x^36 - x^45 + x^55 + ...
G.f. = q - q^9 + q^25 - q^49 - q^81 + q^121 - q^169 + q^225 + q^289 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, -x^4] QPochhammer[ -x^3, -x^4] QPochhammer[ -x^4], {x, 0, n}]; (* Michael Somos, Jun 03 2015 *)
  • PARI
    {a(n) = if( n<0, 0, if( issquare(8*n + 1, &n), n = n\2; (-1)^(n + n\4), 0))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k)^( [1, 1, 0, -1, -1, -1, 1, 1, 2, 1, 1, -1, -1, -1, 0, 1, 1] [k%16 + 1]), 1 + x * O(x^n)), n))};

Formula

Euler transform of period 16 sequence [ -1, 0, 1, 1, 1, -1, -1, -2, -1, -1, 1, 1, 1, 0, -1, -1, ...].
Pattern of signs of nonzero terms is A143431.
G.f.: Sum_{k>=0} (-1)^(k + floor(k/4)) * x^(k * (k+1) / 2).
a(n) = (-1)^n * A143434(n).
a(2*n) = A244465(n). a(2*n + 1) = - A244525(n). a(3*n + 2) = a(5*n + 2) = a(5*n + 4) = 0.

A244560 Expansion of f(-x^1, -x^7)^2 in powers of x where f() is Ramanujan's two-variable theta function.

Original entry on oeis.org

1, -2, 1, 0, 0, 0, 0, -2, 2, 0, 2, -2, 0, 0, 1, 0, 0, -2, 0, 0, 1, 0, 2, -2, 0, 0, 0, -2, 2, -2, 0, 0, 2, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 1, -2, 2, 0, 0, -2, 0, 0, 4, -2, 1, -2, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 2, 0, 2, 0, 2, -2, 0, -2, 0
Offset: 0

Views

Author

Michael Somos, Jun 30 2014

Keywords

Examples

			G.f. = 1 - 2*x + x^2 - 2*x^7 + 2*x^8 + 2*x^10 - 2*x^11 + x^14 - 2*x^17 + ...
G.f. = q^9 - 2*q^17 + q^25 - 2*q^65 + 2*q^73 + 2*q^89 - 2*q^97 + q^121 + ...
		

Crossrefs

Programs

  • Mathematica
    A244560[n_] := SeriesCoefficient[(QPochhammer[q^1, q^8]* QPochhammer[q^7, q^8]*QPochhammer[q^8, q^8])^2, {q, 0, n}]; Table[A244560[n], {n,0,50}] (* G. C. Greubel, Jun 17 2017 *)
  • PARI
    {a(n) = (-1)^n * sum(k=0, n, issquare(16*k + 9) * issquare(16*(n-k) + 9))};

Formula

G.f.: f(-x, -x^7)^2 = (Sum_{k in Z} (-1)^k * x^(4*k^2 - 3*k))^2.
Convolution square of A244525.
a(9*n) = A244526(n). a(9*n + 3) = a(9*n + 6) = 0. a(49*n + 5) = a(n-1).

A287325 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Sum_{j=-inf..inf} (-1)^j*x^(k*j*(j-1)/2 + j^2).

Original entry on oeis.org

1, 1, -2, 1, -1, 0, 1, -1, -1, 0, 1, -1, 0, 0, 2, 1, -1, 0, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, 1, -1, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 1, 1, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, -2, 1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2017

Keywords

Examples

			Square array begins:
   1,   1,   1,   1,   1,   1, ...
  -2,  -1,  -1,  -1,  -1,  -1, ...
   0,  -1,   0,   0,   0,   0, ...
   0,   0,  -1,   0,   0,   0, ...
   2,   0,   0,  -1,   0,   0, ...
   0,   1,   0,   0,  -1,   0, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[(-1)^i x^(k i (i - 1)/2 + i^2), {i, -n, n}], {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[Product[(1 - x^((k + 2) i)) (1 - x^((k + 2) i - 1)) (1 - x^((k + 2) i - k - 1)), {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[(x^(2 + k) QPochhammer[1/x, x^(2 + k)] QPochhammer[x^(-1 - k), x^(2 + k)] QPochhammer[x^(2 + k), x^(2 + k)])/((-1 + x) (-1 + x^(1 + k))), {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten

Formula

G.f. of column 0: Sum_{j=-inf..inf} (-1)^j*x^A000290(j) = Product_{i>=1} (1 + x^i)/(1 - x^i) (convolution inverse of A015128).
G.f. of column 1: Sum_{j=-inf..inf} (-1)^j*x^A000326(j) = Product_{i>=1} (1 - x^i) (convolution inverse of A000041).
G.f. of column 2: Sum_{j=-inf..inf} (-1)^j*x^A000384(j) = Product_{i>=1} (1 - x^(2*i))/(1 + x^(2*i-1)) (convolution inverse of A006950).
G.f. of column 3: Sum_{j=-inf..inf} (-1)^j*x^A000566(j) = Product_{i>=1} (1 - x^(5*i))*(1 - x^(5*i-1))*(1 - x^(5*i-4)) (convolution inverse of A036820).
G.f. of column 4: Sum_{j=-inf..inf} (-1)^j*x^A000567(j) = Product_{i>=1} (1 - x^(6*i))*(1 - x^(6*i-1))*(1 - x^(6*i-5)) (convolution inverse of A195848).
G.f. of column 5: Sum_{j=-inf..inf} (-1)^j*x^A001106(j) = Product_{i>=1} (1 - x^(7*i))*(1 - x^(7*i-1))*(1 - x^(7*i-6)) (convolution inverse of A195849).
G.f. of column 6: Sum_{j=-inf..inf} (-1)^j*x^A001107(j) = Product_{i>=1} (1 - x^(8*i))*(1 - x^(8*i-1))*(1 - x^(8*i-7)) (convolution inverse of A195850).
G.f. of column 7: Sum_{j=-inf..inf} (-1)^j*x^A051682(j) = Product_{i>=1} (1 - x^(9*i))*(1 - x^(9*i-1))*(1 - x^(9*i-8)) (convolution inverse of A195851).
G.f. of column 8: Sum_{j=-inf..inf} (-1)^j*x^A051624(j) = Product_{i>=1} (1 - x^(10*i))*(1 - x^(10*i-1))*(1 - x^(10*i-9)) (convolution inverse of A195852).
G.f. of column 9: Sum_{j=-inf..inf} (-1)^j*x^A051865(j) = Product_{i>=1} (1 - x^(11*i))*(1 - x^(11*i-1))*(1 - x^(11*i-10)) (convolution inverse of A196933).
G.f. of column k: Sum_{j=-inf..inf} (-1)^j*x^(k*j*(j-1)/2+j^2) = Product_{i>=1} (1 - x^((k+2)*i))*(1 - x^((k+2)*i-1))*(1 - x^((k+2)*i-k-1)).
Showing 1-3 of 3 results.