cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A317855 Decimal expansion of a constant related to the asymptotics of A122400.

Original entry on oeis.org

3, 1, 6, 1, 0, 8, 8, 6, 5, 3, 8, 6, 5, 4, 2, 8, 8, 1, 3, 8, 3, 0, 1, 7, 2, 2, 0, 2, 5, 8, 8, 1, 3, 2, 4, 9, 1, 7, 2, 6, 3, 8, 2, 7, 7, 4, 1, 8, 8, 5, 5, 6, 3, 4, 1, 6, 2, 7, 2, 7, 8, 2, 0, 7, 5, 3, 7, 6, 9, 7, 0, 5, 9, 2, 1, 9, 3, 0, 4, 6, 1, 1, 2, 1, 9, 7, 5, 7, 4, 6, 8, 5, 4, 9, 7, 8, 4, 5, 9, 3, 2, 4, 2, 2, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 09 2018

Keywords

Examples

			3.161088653865428813830172202588132491726382774188556341627278...
		

Crossrefs

Programs

  • Mathematica
    r = r /. FindRoot[E^(1/r)/r + (1 + E^(1/r)) * ProductLog[-E^(-1/r)/r] == 0, {r, 3/4}, WorkingPrecision -> 120]; RealDigits[(1 + Exp[1/r])*r^2][[1]]
  • PARI
    r=solve(r=.8,1,exp(1/r)/r + (1+exp(1/r))*lambertw(-exp(-1/r)/r))
    (1+exp(1/r))*r^2 \\ Charles R Greathouse IV, Jun 15 2021

Formula

Equals (1+exp(1/r))*r^2, where r = 0.873702433239668330496568304720719298213992... is the root of the equation exp(1/r)/r + (1+exp(1/r))*LambertW(-exp(-1/r)/r) = 0.

A242228 a(n) = Sum_{k=1..n} k^(2*n-1) * k! * Stirling2(n,k).

Original entry on oeis.org

1, 17, 1651, 473741, 300257371, 355743405917, 706872713310331, 2182548723605418941, 9894910566488309801851, 63052832687428562206049117, 545439670961897317869306191611, 6226501736967631584015448186252541, 91619831483112536750163352484302283131
Offset: 1

Views

Author

Vaclav Kotesovec, May 08 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^(2*n-1) * k! * StirlingS2[n,k], {k,1,n}], {n,1,20}]

Formula

a(n) ~ c * d^n * (n!)^3 / n^2, where d = r^3*(1+exp(2/r)) = 7.8512435106631367719817991716164612615296980032514..., r = 0.94520217245242431308104743874492469552738... is the root of the equation (1+exp(-2/r))*LambertW(-exp(-1/r)/r) = -1/r, and c = 0.15095210978787998524366903417512193343948127919...
E.g.f.: Sum_{k>=1} (exp(k^2*x) - 1)^k / k. - Seiichi Manyama, Jun 19 2024

A243802 E.g.f.: exp( Sum_{n>=1} (exp(n*x) - 1)^n / n ).

Original entry on oeis.org

1, 1, 6, 95, 3043, 167342, 14175447, 1715544861, 280986929888, 59828264507385, 16056622678756319, 5300955907062294008, 2110872493413444115109, 997542435957462115205773, 551887323312314977683048334, 353334615697796170374209624907, 259179558930246734075836153918127
Offset: 0

Views

Author

Paul D. Hanna, Aug 21 2014

Keywords

Comments

Compare to: exp( Sum_{n>=1} (exp(x) - 1)^n/n ) = 1/(2-exp(x)), the e.g.f. of Fubini numbers (A000670).

Examples

			E.g.f.: A(x) = 1 + x + 6*x^2/2! + 95*x^3/3! + 3043*x^4/4! + 167342*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n) = n!*polcoeff( exp( sum(m=1,n+1, (exp(m*x +x*O(x^n)) - 1)^m / m) ), n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ c * d^n * (n!)^2 / n^(3/2), where d = A317855 = (1+exp(1/r))*r^2 = 3.161088653865428813830172202588132491..., r = 0.873702433239668330496568304720719298... is the root of the equation exp(1/r)/r + (1+exp(1/r)) * LambertW(-exp(-1/r)/r) = 0, and c = 0.37498840921734807101035131780130551... . - Vaclav Kotesovec, Aug 21 2014

A373855 a(n) = Sum_{k=1..n} k! * k^(n-1) * |Stirling1(n,k)|.

Original entry on oeis.org

0, 1, 5, 80, 2690, 155074, 13658386, 1706098008, 286888266696, 62485391828448, 17112247116585744, 5755236604915060944, 2331975856351260982848, 1120439648590390138640304, 629855675998212293917375344, 409557081242059531918330384896
Offset: 0

Views

Author

Seiichi Manyama, Jun 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=15; Range[0,nmax]!CoefficientList[Series[Sum[(-Log[1 - k*x])^k / k,{k,nmax}],{x,0,nmax}],x] (* Stefano Spezia, Jun 19 2024 *)
  • PARI
    a(n) = sum(k=1, n, k!*k^(n-1)*abs(stirling(n, k, 1)));

Formula

E.g.f.: Sum_{k>=1} (-log(1 - k*x))^k / k.

A373871 a(n) = Sum_{k=1..n} k! * k^(n-3) * Stirling2(n,k).

Original entry on oeis.org

0, 1, 2, 13, 233, 8311, 495437, 44495263, 5619239453, 949995402271, 207228784973597, 56681221280785663, 19000392210559326173, 7661410911700580500831, 3658694812581483750630557, 2042247041839449013948374463, 1317554928647608644852032652893
Offset: 0

Views

Author

Seiichi Manyama, Jun 20 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, k!*k^(n-3)*stirling(n, k, 2));

Formula

E.g.f.: Sum_{k>=1} (exp(k*x) - 1)^k / k^3.

A373857 a(n) = Sum_{k=1..n} k! * k^(n-1) * Stirling1(n,k).

Original entry on oeis.org

0, 1, 3, 32, 734, 28994, 1752046, 150262104, 17356844088, 2597710341600, 488957612319984, 113044488306692304, 31490845086661001664, 10403092187976909854640, 4021236906890850070201488, 1798052050351216209712206336, 920859156623446912386646303104
Offset: 0

Views

Author

Seiichi Manyama, Jun 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=16; Range[0,nmax]!CoefficientList[Series[Sum[(Log[1 + k*x])^k / k,{k,nmax}],{x,0,nmax}],x] (* Stefano Spezia, Jun 19 2024 *)
  • PARI
    a(n) = sum(k=1, n, k!*k^(n-1)*stirling(n, k, 1));

Formula

E.g.f.: Sum_{k>=1} log(1 + k*x)^k / k.

A373873 a(n) = Sum_{k=1..n} k! * k^(n-2) * Stirling2(n,k).

Original entry on oeis.org

0, 1, 3, 31, 765, 34651, 2502213, 263824891, 38248036725, 7298877611371, 1773652375115973, 534749297993098651, 195883403209280580885, 85687658454617655817291, 44120264185381411695106533, 26413555571018242181844978811
Offset: 0

Views

Author

Seiichi Manyama, Jun 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[k! k^(n-2) StirlingS2[n,k],{k,n}],{n,0,20}] (* Harvey P. Dale, Jul 13 2025 *)
  • PARI
    a(n) = sum(k=1, n, k!*k^(n-2)*stirling(n, k, 2));

Formula

E.g.f.: Sum_{k>=1} (exp(k*x) - 1)^k / k^2.
Showing 1-7 of 7 results.