cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A354074 Factorials that are the sum of the divisors of some m.

Original entry on oeis.org

1, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000
Offset: 1

Views

Author

Jaroslav Krizek, May 16 2022

Keywords

Comments

Sequence of different values of A000203(A245015(n)).
Conjecture: number 2 is the only factorial that is not in this sequence.

Examples

			Number 24 is in the sequence because sigma(14) = sigma(15) = sigma(23) = 24.
		

Crossrefs

Extensions

More terms from Jinyuan Wang, May 17 2022

A255891 Numbers n such that the sum of the even divisors of n is equal to m! and the sum of the odd divisors of n is equal to k! for some integers m and k.

Original entry on oeis.org

2, 4, 240, 348, 368, 380, 19364665320, 20210069880, 20328267960, 20673770040, 20681420760, 20735165880, 20940748920, 20959618680, 21135474360, 21196014840, 21256222680, 21302746920, 21380630040, 21405023640, 21426252120, 21465896760, 21522002040, 21544621560
Offset: 1

Views

Author

Michel Lagneau, Mar 09 2015

Keywords

Comments

Numbers n such that A000593(n) = m! and A146076(n) = k! for some m and k.
Is this sequence finite? No further terms less than 10^6.
No further terms less than 10^9. - Michel Marcus, Mar 10 2015
sigma(a(25711)) >= 29! + 30!. - Hiroaki Yamanouchi, Mar 26 2015

Examples

			240 is in the sequence because A000593(240)= 24 = 4! and A146076(240)= 720 = 6!
		

Crossrefs

Programs

  • Maple
    for n from 2 by 2  to 20000 do:
       y:=divisors(n):n1:=nops(y):s0:=0:s1:=0:
         for k from 1 to n1 do:
           if irem(y[k],2)=0
            then
            s0:=s0+ y[k]:
            else
            s1:=s1+ y[k]:
          fi:
         od:
         ii:=0:
            for a from 1 to 20 while(ii=0)do:
             if s0=a!
              then
               for b from 1 to 20 while(ii=0) do:
                 if s1=b!
                  then
                  ii:=1:print(n):
                  else
                 fi:
               od:
              fi:
            od:
          od:
  • Mathematica
    fQ[n_] := Block[{d = Divisors@ n, lst = Array[Factorial, {449}]}, MemberQ[lst, Plus @@ Select[d, EvenQ]] && MemberQ[lst, Plus @@ Select[d, OddQ]]]; Select[Range@10000, fQ] (* Michael De Vlieger, Mar 10 2015 *)
  • PARI
    isoks(s) = {if (s==1, return (1)); f = 1; for (k=2, s, f *= k; if (f == s, return (1)); if (f > s, return (0)););}
    isok(n) = my(sod = sumdiv(n, d, d*(d%2))); my(sed = sigma(n) - sod); sod && sed && isoks(sed) && isoks(sod); \\ Michel Marcus, Mar 10 2015

Extensions

a(7)-a(24) from Hiroaki Yamanouchi, Mar 26 2015

A351866 Numbers m such that sigma(m) = tau(m)! where sigma(k) = A000203(k) and tau(k) = A000005(k).

Original entry on oeis.org

1, 14, 15, 20154, 21496, 22390, 25978, 26314, 26386, 26439, 27687, 28041, 28671, 28911, 29365, 29397, 29559, 29607, 31135, 32263, 32335, 32665, 32669, 32785, 33383, 33901, 34177, 34279, 34903, 35167, 35629, 35867, 36049, 36271, 36613, 36859, 205286388, 239500772
Offset: 1

Views

Author

Jaroslav Krizek, Feb 22 2022

Keywords

Comments

Corresponding values of sigma(m): 1, 24, 24, 40320, 40320, 40320, 40320, 40320, 40320, 40320, 40320, 40320, ...
Corresponding values of tau(m): 1, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, ...

Examples

			sigma(14) = 24 = tau(14)! = 4!.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A351865.
Subsequence of A245015.

Programs

  • Magma
    [m: m in [1..5*10^6] | &+Divisors(m) eq Factorial(#Divisors(m))];
    
  • Mathematica
    Select[Range[40000], DivisorSigma[1, #] == DivisorSigma[0, #]! &] (* Amiram Eldar, Feb 22 2022 *)
  • PARI
    isok(m) = my(f=factor(m)); sigma(f) == numdiv(f)!; \\ Michel Marcus, Feb 23 2022

Extensions

a(37)-a(38) from Amiram Eldar, Feb 22 2022
Showing 1-3 of 3 results.