cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A016753 Expansion of 1/((1-3*x)*(1-4*x)*(1-5*x)).

Original entry on oeis.org

1, 12, 97, 660, 4081, 23772, 133057, 724260, 3863761, 20308332, 105558817, 544039860, 2785713841, 14192221692, 72020501377, 364354427460, 1838822866321, 9262446387852, 46585947584737
Offset: 0

Views

Author

Keywords

Comments

As (0,0,1,12,97,...) this is the fourth binomial transform of cosh(x)-1. It is the binomial transform of A016269, when this has two leading zeros. Its e.g.f. is then exp(4x)cosh(x) - exp(4x). - Paul Barry, May 13 2003
This gives the third column of the Sheffer triangle A143495 (3-restricted Stirling2 numbers). See the e.g.f. below, and A193685 for comments on the general case. - Wolfdieter Lang, Oct 08 2011
From Kevin Long, Mar 25 2017: (Start)
In the power set poset 2^(n+2), a(n) gives the number of size 3 subposets {A,B,C} such that A subset of C, B subset of C, and A||B. By symmetry, it also counts the size 3 subposets {A,B,C} such that C subset of A, C subset of B, and A||B.
By the power set poset, I mean the subsets of [n+2] ordered by inclusion. A||B means A and B are incomparable.
The result can be proved by showing that the formula holds. 5^n counts triples (A,B,C) of subsets of [n] where A subset of C and B subset of C, since for each x in [n], it is either in C only, in A and C, in B and C, in all three, or in none. However, this also counts the cases where A subset of B and where B subset of A, and we want A||B.
Each case can be counted by 4^n, since if A subset of B⊆C, then each element x of [n] is either in all three, in B and C, in only C, or in none. Hence we subtract 2*4^n from 5^n. These two cases intersect, however, when A = B subset of C, which can be counted by 3^n, since each element x of [n] can be either in all three sets, in only C, or in none.
For the purposes of inclusion-exclusion, we add these sets back in to get 5^n-2*4^n+3^n to count all triples (A,B,C) where A subset of C, B subset of C, and A||B. We want sets, not triples, so this double-counts the sets since interchanging A and B give the same set, so we divide this by 2. Hence the formula for a(n) counts these subposets for 2^(n+2). (End)

Crossrefs

Programs

  • Magma
    [(5^(n+2) - 2*4^(n+2) + 3^(n+2))/2: n in [0..30]]; // G. C. Greubel, Sep 15 2018
  • Mathematica
    CoefficientList[ Series[ 1/((1 - 3x)(1 - 4x)(1 - 5x)), {x, 0, 25} ], x ]
    LinearRecurrence[{12,-47,60}, {1, 12, 97}, 30] (* G. C. Greubel, Sep 15 2018 *)
  • PARI
    Vec(1/((1-3*x)*(1-4*x)*(1-5*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    

Formula

a(n) = 5^(n+2)/2 - 4^(n+2) + 3^(n+2)/2. - Paul Barry, May 13 2003
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*stirling2(k,j)*x^(m-k) then a(n-2) = f(n,2,3), (n >= 2). - Milan Janjic, Apr 26 2009
a(n) = 9*a(n-1) - 20*a(n-2) + 3^n, n >= 2. - Vincenzo Librandi, Mar 20 2011
O.g.f.: 1/((1-3*x)*(1-4*x)*(1-5*x)).
E.g.f.: (d^2/dx^2) (exp(3*x)*((exp(x)-1)^2)/2!). - Wolfdieter Lang, Oct 08 2011
a(n) = A245019(n+2)/2. - Kevin Long, Mar 24 2017

A247516 Card{(x,y,z,t): 1<=x,y,z,t<=n, gcd(x,y,z,t)=1, lcm(x,y,z,t)=n}.

Original entry on oeis.org

1, 14, 14, 50, 14, 196, 14, 110, 50, 196, 14, 700, 14, 196, 196, 194, 14, 700, 14, 700, 196, 196, 14, 1540, 50, 196, 110, 700, 14, 2744, 14, 302, 196, 196, 196, 2500, 14, 196, 196, 1540, 14, 2744, 14, 700, 700, 196, 14, 2716, 50, 700, 196, 700, 14, 1540, 196
Offset: 1

Views

Author

Ovidiu Bagdasar, Sep 18 2014

Keywords

Comments

For given n and k positive integers, let L(n,k) represent the number of ordered k-tuples of positive integers, whose GCD is 1 and LCM is n. In this notation, the sequence corresponds to a(n) = L(n,4).

Crossrefs

Cf. A034444 (produced by L(n,2)), A245019, A070920.

Programs

  • Mathematica
    f[p_, e_] := 2*(6*e^2 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 03 2023 *)
  • PARI
    a(n) = {f = factor(n); 2^omega(n)*prod(k=1, #f~, 6*f[k, 2]^2+1);} \\ Michel Marcus, Sep 18 2014

Formula

For n = p_1^{n_1} p_2^{n_2}...p_r^{n_r} one has
a(n) = Product_{i=1..r} ((n_i+1)^4 - 2*n_i^4 + (n_i-1)^4).
a(n) = 2^omega(n)*Product_{i=1..r} (6n_i^2 + 1).

Extensions

More terms from Michel Marcus, Sep 18 2014

A247517 Card{(x,y,z,t,u): 1<=x,y,z,t,u<=n, gcd(x,y,z,t,u)=1, lcm(x,y,z,t,u)=n}.

Original entry on oeis.org

1, 30, 30, 180, 30, 900, 30, 570, 180, 900, 30, 5400, 30, 900, 900, 1320, 30, 5400, 30, 5400, 900, 900, 30, 17100, 180, 900, 570, 5400, 30, 27000, 30, 2550, 900, 900, 900, 32400, 30, 900, 900, 17100, 30, 27000, 30, 5400, 5400, 900, 30, 39600, 180, 5400, 900
Offset: 1

Views

Author

Ovidiu Bagdasar, Sep 18 2014

Keywords

Comments

For given n and k positive integers, let L(n,k) represent the number of ordered k-tuples of positive integers, whose GCD is 1 and LCM is n. In this notation, the sequence corresponds to a(n) = L(n,5).

Crossrefs

L(n,2) produces A034444, A245019, A070921.
Cf. A247516.

Programs

  • Mathematica
    f[p_, e_] := 10*(2*e^3 + e); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 03 2023 *)
  • PARI
    a(n) = {f = factor(n); 10^omega(n)*prod(k=1, #f~, 2*f[k, 2]^3+f[k, 2]); }

Formula

For n = p_1^{n_1} p_2^{n_2}...p_r^{n_r} one has
a(n) = Product_{i=1..r} ((n_i+1)^5 - 2*n_i^5 + (n_i-1)^5).
a(n) = 10^omega(n)*Product_{i=1..r} (2n_i^3 + n_i).
Showing 1-3 of 3 results.