cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A245092 The even numbers (A005843) and the values of sigma function (A000203) interleaved.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 6, 7, 8, 6, 10, 12, 12, 8, 14, 15, 16, 13, 18, 18, 20, 12, 22, 28, 24, 14, 26, 24, 28, 24, 30, 31, 32, 18, 34, 39, 36, 20, 38, 42, 40, 32, 42, 36, 44, 24, 46, 60, 48, 31, 50, 42, 52, 40, 54, 56, 56, 30, 58, 72, 60, 32, 62, 63, 64, 48
Offset: 0

Views

Author

Omar E. Pol, Jul 15 2014

Keywords

Comments

Consider an irregular stepped pyramid with n steps. The base of the pyramid is equal to the symmetric representation of A024916(n), the sum of all divisors of all positive integers <= n. Two of the faces of the pyramid are the same as the representation of the n-th triangular numbers as a staircase. The total area of the pyramid is equal to 2*A024916(n) + A046092(n). The volume is equal to A175254(n). By definition a(2n-1) is A000203(n), the sum of divisors of n. Starting from the top a(2n-1) is also the total area of the horizontal part of the n-th step of the pyramid. By definition, a(2n) = A005843(n) = 2n. Starting from the top, a(2n) is also the total area of the irregular vertical part of the n-th step of the pyramid.
On the other hand the sequence also has a symmetric representation in two dimensions, see Example.
From Omar E. Pol, Dec 31 2016: (Start)
We can find the pyramid after the following sequences: A196020 --> A236104 --> A235791 --> A237591 --> A237593.
The structure of this infinite pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593 (see the links).
The terraces at the m-th level of the pyramid are also the parts of the symmetric representation of sigma(m), m >= 1, hence the sum of the areas of the terraces at the m-th level equals A000203(m).
Note that the stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
For more information about the pyramid see A237593 and all its related sequences. (End)

Examples

			Illustration of initial terms:
----------------------------------------------------------------------
a(n)                             Diagram
----------------------------------------------------------------------
0    _
1   |_|\ _
2    \ _| |\ _
3     |_ _| | |\ _
4      \ _ _|_| | |\ _
4       |_ _|  _| | | |\ _
6        \ _ _|  _| | | | |\ _
7         |_ _ _|  _|_| | | | |\ _
8          \ _ _ _|  _ _| | | | | |\ _
6           |_ _ _| |    _| | | | | | |\ _
10           \ _ _ _|  _|  _|_| | | | | | |\ _
12            |_ _ _ _|  _|  _ _| | | | | | | |\ _
12             \ _ _ _ _|  _|  _ _| | | | | | | | |\ _
8               |_ _ _ _| |  _|  _ _|_| | | | | | | | |\ _
14               \ _ _ _ _| |  _| |  _ _| | | | | | | | | |\ _
15                |_ _ _ _ _| |_ _| |  _ _| | | | | | | | | | |\ _
16                 \ _ _ _ _ _|  _ _|_|  _ _|_| | | | | | | | | | |\
13                  |_ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | | | |
18                   \ _ _ _ _ _| |  _|  _|    _ _| | | | | | | | | |
18                    |_ _ _ _ _ _| |  _|     |  _ _|_| | | | | | | |
20                     \ _ _ _ _ _ _| |      _| |  _ _ _| | | | | | |
12                      |_ _ _ _ _ _| |  _ _|  _| |  _ _ _| | | | | |
22                       \ _ _ _ _ _ _| |  _ _|  _|_|  _ _ _|_| | | |
28                        |_ _ _ _ _ _ _| |  _ _|  _ _| |  _ _ _| | |
24                         \ _ _ _ _ _ _ _| |  _| |    _| |  _ _ _| |
14                          |_ _ _ _ _ _ _| | |  _|  _|  _| |  _ _ _|
26                           \ _ _ _ _ _ _ _| | |_ _|  _|  _| |
24                            |_ _ _ _ _ _ _ _| |  _ _|  _|  _|
28                             \ _ _ _ _ _ _ _ _| |  _ _|  _|
24                              |_ _ _ _ _ _ _ _| | |  _ _|
30                               \ _ _ _ _ _ _ _ _| | |
31                                |_ _ _ _ _ _ _ _ _| |
32                                 \ _ _ _ _ _ _ _ _ _|
...
a(n) is the total area of the n-th set of symmetric regions in the diagram.
.
From _Omar E. Pol_, Aug 21 2015: (Start)
The above structure contains a hidden pattern, simpler, as shown below:
Level                              _ _
1                                _| | |_
2                              _|  _|_  |_
3                            _|   | | |   |_
4                          _|    _| | |_    |_
5                        _|     |  _|_  |     |_
6                      _|      _| | | | |_      |_
7                    _|       |   | | |   |       |_
8                  _|        _|  _| | |_  |_        |_
9                _|         |   |  _|_  |   |         |_
10             _|          _|   | | | | |   |_          |_
11           _|           |    _| | | | |_    |           |_
12         _|            _|   |   | | |   |   |_            |_
13       _|             |     |  _| | |_  |     |             |_
14     _|              _|    _| |  _|_  | |_    |_              |_
15   _|               |     |   | | | | |   |     |               |_
16  |                 |     |   | | | | |   |     |                 |
...
The symmetric pattern emerges from the front view of the stepped pyramid.
Note that starting from this diagram A000203 is obtained as follows:
In the pyramid the area of the k-th vertical region in the n-th level on the front view is equal to A237593(n,k), and the sum of all areas of the vertical regions in the n-th level on the front view is equal to 2n.
The area of the k-th horizontal region in the n-th level is equal to A237270(n,k), and the sum of all areas of the horizontal regions in the n-th level is equal to sigma(n) = A000203(n). (End)
From _Omar E. Pol_, Dec 31 2016: (Start)
Illustration of the top view of the pyramid with 16 levels:
.
n   A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1      1   =      1      |_| | | | | | | | | | | | | | | |
2      3   =      3      |_ _|_| | | | | | | | | | | | | |
3      4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
4      7   =      7      |_ _ _|    _|_| | | | | | | | | |
5      6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
6     12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
7      8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
8     15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
9     13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
16    31   =     31      |_ _ _ _ _ _ _ _ _|
... (End)
		

Crossrefs

Programs

  • Mathematica
    Table[If[EvenQ@ n, n, DivisorSigma[1, (n + 1)/2]], {n, 0, 65}] (* or *)
    Transpose@ {Range[0, #, 2], DivisorSigma[1, #] & /@ Range[#/2 + 1]} &@ 65 // Flatten (* Michael De Vlieger, Dec 31 2016 *)
    With[{nn=70},Riffle[Range[0,nn,2],DivisorSigma[1,Range[nn/2]]]] (* Harvey P. Dale, Aug 05 2024 *)

Formula

a(2*n-1) + a(2n) = A224880(n).

A221529 Triangle read by rows: T(n,k) = A000203(k)*A000041(n-k), 1 <= k <= n.

Original entry on oeis.org

1, 1, 3, 2, 3, 4, 3, 6, 4, 7, 5, 9, 8, 7, 6, 7, 15, 12, 14, 6, 12, 11, 21, 20, 21, 12, 12, 8, 15, 33, 28, 35, 18, 24, 8, 15, 22, 45, 44, 49, 30, 36, 16, 15, 13, 30, 66, 60, 77, 42, 60, 24, 30, 13, 18, 42, 90, 88, 105, 66, 84, 40, 45, 26, 18, 12, 56, 126, 120, 154, 90, 132, 56, 75, 39, 36, 12, 28
Offset: 1

Views

Author

Omar E. Pol, Jan 20 2013

Keywords

Comments

Since A000203(k) has a symmetric representation, both T(n,k) and the partial sums of row n can be represented by symmetric polycubes. For more information see A237593 and A237270. For another version see A245099. - Omar E. Pol, Jul 15 2014
From Omar E. Pol, Jul 10 2021: (Start)
The above comment refers to a symmetric tower whose terraces are the symmetric representation of sigma(i), for i = 1..n, starting from the top. The levels of these terraces are the partition numbers A000041(h-1), for h = 1 to n, starting from the base of the tower, where n is the length of the largest side of the base.
The base of the tower is the symmetric representation of A024916(n).
The height of the tower is equal to A000041(n-1).
The surface area of the tower is equal to A345023(n).
The volume (or the number of cubes) of the tower equals A066186(n).
The volume represents the n-th term of the convolution of A000203 and A000041, that is A066186(n).
Note that the terraces that are the symmetric representation of sigma(n) and the terraces that are the symmetric representation of sigma(n-1) both are unified in level 1 of the structure. That is because the first two partition numbers A000041 are [1, 1].
The tower is an object of the family of the stepped pyramid described in A245092.
T(n,k) can be represented with a set of A237271(k) right prisms of height A000041(n-k) since T(n,k) is the total number of cubes that are exactly below the parts of the symmetric representation of sigma(k) in the tower.
T(n,k) is also the sum of all divisors of all k's that are in the first n rows of triangle A336811, or in other words, in the first A000070(n-1) terms of the sequence A336811. Hence T(n,k) is also the sum of all divisors of all k's in the n-th row of triangle A176206.
The mentioned property is due to the correspondence between divisors and parts explained in A338156: all divisors of the first A000070(n-1) terms of A336811 are also all parts of all partitions of n.
Therefore the set of all partitions of n >= 1 has an associated tower.
The partial column sums of A340583 give this triangle showing the growth of the structure of the tower.
Note that the convolution of A000203 with any integer sequence S can be represented with a symmetric tower or structure of the same family where its terraces are the symmetric representation of sigma starting from the top and the heights of the terraces starting from the base are the terms of the sequence S. (End)

Examples

			Triangle begins:
------------------------------------------------------
    n| k    1   2   3   4   5   6   7   8   9  10
------------------------------------------------------
    1|      1;
    2|      1,  3;
    3|      2,  3,  4;
    4|      3,  6,  4,  7;
    5|      5,  9,  8,  7,  6;
    6|      7, 15, 12, 14,  6, 12;
    7|     11, 21, 20, 21, 12, 12,  8;
    8|     15, 33, 28, 35, 18, 24,  8, 15;
    9|     22, 45, 44, 49, 30, 36, 16, 15, 13;
   10|     30, 66, 60, 77, 42, 60, 24, 30, 13, 18;
...
The sum of row 10 is [30 + 66 + 60 + 77 + 42 + 60 + 24 + 30 + 13 + 18] = A066186(10) = 420.
.
For n = 10 the calculation of the row 10 is as follows:
    k    A000203         T(10,k)
    1       1   *  30   =   30
    2       3   *  22   =   66
    3       4   *  15   =   60
    4       7   *  11   =   77
    5       6   *   7   =   42
    6      12   *   5   =   60
    7       8   *   3   =   24
    8      15   *   2   =   30
    9      13   *   1   =   13
   10      18   *   1   =   18
                 A000041
.
From _Omar E. Pol_, Jul 13 2021: (Start)
For n = 10 we can see below three views of two associated polycubes called here "prism of partitions" and "tower". Both objects contain the same number of cubes (that property is valid for n >= 1).
        _ _ _ _ _ _ _ _ _ _
  42   |_ _ _ _ _          |
       |_ _ _ _ _|_        |
       |_ _ _ _ _ _|_      |
       |_ _ _ _      |     |
       |_ _ _ _|_ _ _|_    |
       |_ _ _ _        |   |
       |_ _ _ _|_      |   |
       |_ _ _ _ _|_    |   |
       |_ _ _      |   |   |
       |_ _ _|_    |   |   |
       |_ _    |   |   |   |
       |_ _|_ _|_ _|_ _|_  |                             _
  30   |_ _ _ _ _        | |                            | | 30
       |_ _ _ _ _|_      | |                            | |
       |_ _ _      |     | |                            | |
       |_ _ _|_ _ _|_    | |                            | |
       |_ _ _ _      |   | |                            | |
       |_ _ _ _|_    |   | |                            | |
       |_ _ _    |   |   | |                            | |
       |_ _ _|_ _|_ _|_  | |                           _|_|
  22   |_ _ _ _        | | |                          |   |  22
       |_ _ _ _|_      | | |                          |   |
       |_ _ _ _ _|_    | | |                          |   |
       |_ _ _      |   | | |                          |   |
       |_ _ _|_    |   | | |                          |   |
       |_ _    |   |   | | |                          |   |
       |_ _|_ _|_ _|_  | | |                         _|_ _|
  15   |_ _ _ _      | | | |                        | |   |  15
       |_ _ _ _|_    | | | |                        | |   |
       |_ _ _    |   | | | |                        | |   |
       |_ _ _|_ _|_  | | | |                       _|_|_ _|
  11   |_ _ _      | | | | |                      | |     |  11
       |_ _ _|_    | | | | |                      | |     |
       |_ _    |   | | | | |                      | |     |
       |_ _|_ _|_  | | | | |                     _| |_ _ _|
   7   |_ _ _    | | | | | |                    |   |     |   7
       |_ _ _|_  | | | | | |                   _|_ _|_ _ _|
   5   |_ _    | | | | | | |                  | | |       |   5
       |_ _|_  | | | | | | |                 _| | |_ _ _ _|
   3   |_ _  | | | | | | | |               _|_ _|_|_ _ _ _|   3
   2   |_  | | | | | | | | |           _ _|_ _|_|_ _ _ _ _|   2
   1   |_|_|_|_|_|_|_|_|_|_|          |_ _|_|_|_ _ _ _ _ _|   1
.
             Figure 1.                       Figure 2.
         Front view of the                 Lateral view
        prism of partitions.               of the tower.
.
.                                      _ _ _ _ _ _ _ _ _ _
                                      |   | | | | | | | |_|   1
                                      |   | | | | | |_|_ _|   2
                                      |   | | | |_|_  |_ _|   3
                                      |   | |_|_    |_ _ _|   4
                                      |   |_ _  |_  |_ _ _|   5
                                      |_ _    |_  |_ _ _ _|   6
                                          |_    | |_ _ _ _|   7
                                            |_  |_ _ _ _ _|   8
                                              |           |   9
                                              |_ _ _ _ _ _|  10
.
                                             Figure 3.
                                             Top view
                                           of the tower.
.
Figure 1 is a two-dimensional diagram of the partitions of 10 in colexicographic order (cf. A026792, A211992). The area of the diagram is 10*42 = A066186(10) = 420. Note that the diagram can be interpreted also as the front view of a right prism whose volume is 1*10*42 = 420 equaling the volume and the number of cubes of the tower that appears in the figures 2 and 3.
Note that the shape and the area of the lateral view of the tower are the same as the shape and the area where the 1's are located in the diagram of partitions. In this case the mentioned area equals A000070(10-1) = 97.
The connection between these two associated objects is a representation of the correspondence divisor/part described in A338156. See also A336812.
The sum of the volumes of both objects equals A220909.
For the connection with the table of A338156 see also A340035. (End)
		

Crossrefs

Programs

  • Mathematica
    nrows=12; Table[Table[DivisorSigma[1,k]PartitionsP[n-k],{k,n}],{n,nrows}] // Flatten (* Paolo Xausa, Jun 17 2022 *)
  • PARI
    T(n,k)=sigma(k)*numbpart(n-k) \\ Charles R Greathouse IV, Feb 19 2013

Formula

T(n,k) = sigma(k)*p(n-k) = A000203(k)*A027293(n,k).
T(n,k) = A245093(n,k)*A027293(n,k).

A274824 Triangle read by rows: T(n,k) = (n-k+1)*sigma(k), n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 3, 3, 6, 4, 4, 9, 8, 7, 5, 12, 12, 14, 6, 6, 15, 16, 21, 12, 12, 7, 18, 20, 28, 18, 24, 8, 8, 21, 24, 35, 24, 36, 16, 15, 9, 24, 28, 42, 30, 48, 24, 30, 13, 10, 27, 32, 49, 36, 60, 32, 45, 26, 18, 11, 30, 36, 56, 42, 72, 40, 60, 39, 36, 12, 12, 33, 40, 63, 48, 84, 48, 75, 52, 54, 24, 28, 13, 36, 44, 70, 54, 96, 56, 90, 65, 72, 36, 56, 14
Offset: 1

Views

Author

Omar E. Pol, Oct 02 2016

Keywords

Comments

Theorem: for any sequence S the partial sums of the partial sums are also the antidiagonal sums of the square array in which the n-th row gives n times the sequence S. Therefore they are also the row sums of the triangular array in which the n-th diagonal gives n times the sequence S.
In this case the sequence S is A000203.
The n-th diagonal of this triangle gives n times A000203.
The row sums give A175254 which gives the partial sums of A024916 which gives the partial sums of A000203.
T(n,k) is also the total number of unit cubes that are exactly below the terraces of the k-th level (starting from the top) up the base of the stepped pyramid with n levels described in A245092. This fact is because the mentioned terraces have the same shape as the symmetric representation of sigma(k). For more information see A237593 and A237270.
In the definition of this sequence the value n-k+1 is also the height of the terraces associated to sigma(k) in the mentioned pyramid with n levels, or in other words, the distance between the mentioned terraces and the base of the pyramid.
The sum of the n-th row of triangle equals the volume (also the number of cubes) of the mentioned pyramid with n levels.
For an illustration of the pyramid, see the Links section.
The sum of the n-th row is also 1/4 of the volume of the stepped pyramid described in A244050 with n levels.
Column k lists the positive multiples of sigma(k).
The k-th term in the n-th diagonal is equal to n*sigma(k).
Note that this is also a square array read by antidiagonals upwards: T(i,j) = i*sigma(j), i>=1, j>=1. The first row of the array is A000203. So consider that the pyramid is upside down. The value of "i" is the distance between the base of the pyramid and the terraces associated to sigma(j). The antidiagonal sums give the partial sums of the partial sums of A000203.

Examples

			Triangle begins:
1;
2,  3;
3,  6,  4;
4,  9,  8,  7;
5,  12, 12, 14, 6;
6,  15, 16, 21, 12, 12;
7,  18, 20, 28, 18, 24,  8;
8,  21, 24, 35, 24, 36,  16, 15;
9,  24, 28, 42, 30, 48,  24, 30,  13;
10, 27, 32, 49, 36, 60,  32, 45,  26,  18;
11, 30, 36, 56, 42, 72,  40, 60,  39,  36,  12;
12, 33, 40, 63, 48, 84,  48, 75,  52,  54,  24, 28;
13, 36, 44, 70, 54, 96,  56, 90,  65,  72,  36, 56,  14;
14, 39, 48, 77, 60, 108, 64, 105, 78,  90,  48, 84,  28, 24;
15, 42, 52, 84, 66, 120, 72, 120, 91,  108, 60, 112, 42, 48, 24;
16, 45, 56, 91, 72, 132, 80, 135, 104, 126, 72, 140, 56, 72, 48, 31;
...
For n = 16 and k = 10 the sum of the divisors of 10 is 1 + 2 + 5 + 10 = 18, and 16 - 10 + 1 = 7, and 7*18 = 126, so T(16,10) = 126.
On the other hand, the symmetric representation of sigma(10) has two parts of 9 cells, giving a total of 18 cells. In the stepped pyramid described in A245092, with 16 levels, there are 16 - 10 + 1 = 7 cubes exactly below every cell of the symmetric representation of sigma(10) up the base of pyramid; hence the total numbers of cubes exactly below the terraces of the 10th level (starting from the top) up the base of the pyramid is equal to 7*18 = 126. So T(16,10) = 126.
The sum of the 16th row of the triangle is 16 + 45 + 56 + 91 + 72 + 132 + 80 + 135 + 104 + 126 + 72 + 140 + 56 + 72 + 48 + 31 = A175254(16) = 1276, equaling the volume (also the number of cubes) of the stepped pyramid with 16 levels described in A245092 (see Links section).
		

Crossrefs

Row sums of triangle give A175254.
Column 1 is A000027.
Initial zeros should be omitted in the following sequences related to the columns of triangle:
Columns 2-5: A008585, A008586, A008589, A008588.
Columns 6 and 11: A008594.
Columns 7-9: A008590, A008597, A008595.
Columns 10 and 17: A008600.
Columns 12-13: A135628, A008596.
Columns 14, 15 and 23: A008606.
Columns 16 and 25: A135631.
(There are many other OEIS sequences that are also columns of this triangle.)

Formula

T(n,k) = (n-k+1) * A000203(k).
T(n,k) = A004736(n,k) * A245093(n,k).

A346533 Irregular triangle read by rows in which row n lists the first n - 2 terms of A000203 together with the sum of A000203(n-1) and A000203(n), with a(1) = 1.

Original entry on oeis.org

1, 4, 1, 7, 1, 3, 11, 1, 3, 4, 13, 1, 3, 4, 7, 18, 1, 3, 4, 7, 6, 20, 1, 3, 4, 7, 6, 12, 23, 1, 3, 4, 7, 6, 12, 8, 28, 1, 3, 4, 7, 6, 12, 8, 15, 31, 1, 3, 4, 7, 6, 12, 8, 15, 13, 30, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 40, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 42, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 38
Offset: 1

Views

Author

Omar E. Pol, Jul 22 2021

Keywords

Comments

T(n,k) is the total area (or number of cells) of the terraces that are in the k-th level that contains terraces starting from the top of the symmetric tower (a polycube) described in A221529.
The height of the tower equals A000041(n-1).
The terraces of the tower are the symmetric representation of sigma.
The terraces are in the levels that are the partition numbers A000041 starting from the base.
Note that for n >= 2 there are n - 1 terraces because the lower terrace of the tower is formed by two symmetric representations of sigma in the same level.

Examples

			Triangle begins:
  1;
  4;
  1, 7;
  1, 3, 11;
  1, 3,  4, 13;
  1, 3,  4,  7, 18;
  1, 3,  4,  7,  6, 20;
  1, 3,  4,  7,  6, 12, 23;
  1, 3,  4,  7,  6, 12,  8, 28;
  1, 3,  4,  7,  6, 12,  8, 15, 31;
  1, 3,  4,  7,  6, 12,  8, 15, 13, 30;
  1, 3,  4,  7,  6, 12,  8, 15, 13, 18, 40;
  1, 3,  4,  7,  6, 12,  8, 15, 13, 18, 12, 42;
  1, 3,  4,  7,  6, 12,  8, 15, 13, 18, 12, 28, 38;
  ...
For n = 7, sigma(7) = 1 + 7 = 8 and sigma(6) = 1 + 2 + 3 + 6 = 12, and 8 + 12 = 20, so the last term of row 7 is T(7,6) = 20. The other terms in row 7 are the first five terms of A000203, so the 7th row of the triangle is [1, 3, 4, 7, 6, 20].
For n = 7 we can see below the top view and the lateral view of the pyramid described in A245092 (with seven levels) and the top view and the lateral view of the tower described in A221529 (with 11 levels).
                                           _
                                          | |
                                          | |
                                          | |
        _                                 |_|_
       |_|_                               |   |
       |_ _|_                             |_ _|_
       |_ _|_|_                           |   | |
       |_ _ _| |_                         |_ _|_|_
       |_ _ _|_ _|_                       |_ _ _| |_
       |_ _ _ _| | |_                     |_ _ _|_ _|_ _
       |_ _ _ _|_|_ _|                    |_ _ _ _|_|_ _|
.
         Figure 1.                           Figure 2.
        Lateral view                       Lateral view
       of the pyramid.                     of the tower.
.
.       _ _ _ _ _ _ _                      _ _ _ _ _ _ _
       |_| | | | | | |                    |_| | | | |   |
       |_ _|_| | | | |                    |_ _|_| | |   |
       |_ _|  _|_| | |                    |_ _|  _|_|   |
       |_ _ _|    _|_|                    |_ _ _|    _ _|
       |_ _ _|  _|                        |_ _ _|  _|
       |_ _ _ _|                          |       |
       |_ _ _ _|                          |_ _ _ _|
.
          Figure 3.                          Figure 4.
          Top view                           Top view
       of the pyramid.                     of the tower.
.
Both polycubes have the same base which has an area equal to A024916(7) = 41 equaling the sum of the 7th row of triangle.
Note that in the top view of the tower the symmetric representation of sigma(6) and the symmetric representation of sigma(7) appear unified in the level 1 of the structure as shown above in the figure 4 (that is due the first two partition numbers A000041 are [1, 1]), so T(7,6) = sigma(7) + sigma(6) = 8 + 12 = 20.
.
Illustration of initial terms:
   Row 1    Row 2      Row 3      Row 4        Row 5          Row 6
.
    1        4         1 7        1 3 11       1 3 4 13       1 3 4 7 18
.   _        _ _       _ _ _      _ _ _ _      _ _ _ _ _      _ _ _ _ _ _
   |_|      |   |     |_|   |    |_| |   |    |_| | |   |    |_| | | |   |
            |_ _|     |    _|    |_ _|   |    |_ _|_|   |    |_ _|_| |   |
                      |_ _|      |      _|    |_ _|  _ _|    |_ _|  _|   |
                                 |_ _ _|      |     |        |_ _ _|    _|
                                              |_ _ _|        |        _|
                                                             |_ _ _ _|
.
		

Crossrefs

Mirror of A340584.
The length of row n is A028310(n-1).
Row sums give A024916.
Leading diagonal gives A092403.
Other diagonals give A000203.
Companion of A346562.
Cf. A175254 (volume of the pyramid).
Cf. A066186 (volume of the tower).

Programs

  • Mathematica
    A346533row[n_]:=If[n==1,{1},Join[DivisorSigma[1,Range[n-2]],{Total[DivisorSigma[1,{n-1,n}]]}]];Array[A346533row,15] (* Paolo Xausa, Oct 23 2023 *)

A272172 Triangle read by rows: T(n,k) in which row n lists the first n terms of A000203 in reverse order.

Original entry on oeis.org

1, 3, 1, 4, 3, 1, 7, 4, 3, 1, 6, 7, 4, 3, 1, 12, 6, 7, 4, 3, 1, 8, 12, 6, 7, 4, 3, 1, 15, 8, 12, 6, 7, 4, 3, 1, 13, 15, 8, 12, 6, 7, 4, 3, 1, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1, 28, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1, 14, 28, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1, 24, 14, 28
Offset: 1

Views

Author

Omar E. Pol, Apr 21 2016

Keywords

Examples

			Triangle begins:
1;
3,   1;
4,   3,  1;
7,   4,  3,  1;
6,   7,  4,  3,  1;
12,  6,  7,  4,  3,  1;
8,  12,  6,  7,  4,  3,  1;
15,  8, 12,  6,  7,  4,  3,  1;
13, 15,  8, 12,  6,  7,  4,  3,  1;
18, 13, 15,  8, 12,  6,  7,  4,  3,  1;
12, 18, 13, 15,  8, 12,  6,  7,  4,  3,  1;
28, 12, 18, 13, 15,  8, 12,  6,  7,  4,  3,  1;
...
		

Crossrefs

Mirror of A245093.
Column k gives A000203 starting in row k.
Row sums give A024916.

Formula

a(n) = A000203(A004736(n)).
T(n,k) = A000203(n-k+1).

A265652 Triangle read by rows: T(n,k) is the sum of the union of the divisors of n and k.

Original entry on oeis.org

1, 3, 3, 4, 6, 4, 7, 7, 10, 7, 6, 8, 9, 12, 6, 12, 12, 12, 16, 17, 12, 8, 10, 11, 14, 13, 19, 8, 15, 15, 18, 15, 20, 24, 22, 15, 13, 15, 13, 19, 18, 21, 20, 27, 13, 18, 18, 21, 22, 18, 27, 25, 30, 30, 18, 12, 14, 15, 18, 17, 23, 19, 26, 24, 29, 12, 28, 28, 28, 28, 33, 28, 35, 36, 37, 43, 39, 28
Offset: 1

Views

Author

Keywords

Comments

Does every positive integer except 2 and 5 occur here? The stronger form of Goldbach's conjecture (every even integer > 6 is the sum of two distinct primes) suffices to show that every odd integer (except 5) is in the sequence, since T(p,q) = p + q + 1.

Examples

			Triangle begins:
   1
   3  3
   4  6  4
   7  7 10  7
   6  8  9 12  6
  12 12 12 16 17 12
  ...
The divisors of 3 are {1, 3}; the divisors of 4 are {1, 2, 4}. The union is {1, 2, 3, 4}, summing to 10; so T(4,3) = 10.
		

Crossrefs

Cf. A000203 (first column and main diagonal).
T(2n,n) gives A062731.

Programs

  • Haskell
    a265652 n k = a265652_tabl !! (n-1) !! (k-1)
    a265652_row n = a265652_tabl !! (n-1)
    a265652_tabl = zipWith (zipWith (-))
       (zipWith (map . (+)) a000203_list a245093_tabl) a132442_tabl
    -- Reinhard Zumkeller, Dec 12 2015
  • Maple
    seq(seq(numtheory:-sigma(n) + numtheory:-sigma(k) - numtheory:-sigma(igcd(n,k)), k=1..n), n=1..10); # Robert Israel, Dec 17 2015
  • Mathematica
    Table[Total@ Union[Divisors@ n, Divisors@ k], {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Dec 18 2015 *)
  • PARI
    T(n,k) = sigma(n) + sigma(k) - sigma(gcd(n,k))
    

Formula

T(n,k) = sigma(n) + sigma(k) - sigma(gcd(n,k)).
T(n,k) = A000203(n) + A245093(n,k) - A132442(n,k). - Reinhard Zumkeller, Dec 12 2015

A272120 Square array T(n,k), n>=1, k>=1, read by antidiagonals downwards in which column k lists the alternating row sums of the first k columns of the triangle A196020.

Original entry on oeis.org

1, 1, 3, 1, 3, 5, 1, 3, 4, 7, 1, 3, 4, 7, 9, 1, 3, 4, 7, 6, 11, 1, 3, 4, 7, 6, 11, 13, 1, 3, 4, 7, 6, 12, 8, 15, 1, 3, 4, 7, 6, 12, 8, 15, 17, 1, 3, 4, 7, 6, 12, 8, 15, 10, 19, 1, 3, 4, 7, 6, 12, 8, 15, 13, 19, 21, 1, 3, 4, 7, 6, 12, 8, 15, 13, 19, 12, 23, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 23, 25, 1, 3, 4, 7
Offset: 1

Views

Author

Omar E. Pol, Apr 20 2016

Keywords

Comments

Every column of this square array is associated to an isosceles triangle and to a stepped pyramid in the same way as the sequence A196020 is associated to the isosceles triangle of A237593 and to the pyramid described in A245092. Hence there are infinitely many isosceles triangles and infinitely many pyramids that are associated to this sequence.
In the Example section appears the triangles and the top views of the pyramids associated to the columns 1 and 2.
The sequence A196020 is associated to the isosceles triangle of A237593 as follows: A196020 --> A236104 --> A235791 --> A237591 --> A237593. Then the structure of the pyramid described in A245092 arises after the 90-degree-zig-zag folding of every row of the isosceles triangle of A237593.
Note that the first m terms of column k are also the first m terms of A000203, where m = A000217(k) + k = A000217(k+1) - 1 = A000096(k).

Examples

			The corner of the square array begins:
1,   1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1...
3,   3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3...
5,   4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4...
7,   7,  7,  7,  7,  7,  7,  7,  7,  7,  7,  7,  7,  7,  7...
9,   6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6...
11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12...
13,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8...
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15...
17, 10, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13...
19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18...
21, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12...
23, 23, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28...
25, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14...
27, 27, 27, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24...
29, 16, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24...
...
For k = 1 the first two terms of column k are also the first two terms of A000203, i.e., [1, 3].
For k = 2 the first five terms of column k are also the first five terms of A000203, i.e., [1, 3, 4, 7, 6].
For k = 3 the first nine terms of column k are also the first nine terms of A000203, i.e., [1, 3, 4, 7, 6, 12, 8, 15, 13].
More generally, the first A000096(k) terms of column k are also the first A000096(k) terms of A000203.
.
Illustration of initial terms of the column 1:
.
.                   2D                                3D
.           Isosceles triangle             Top view of the pyramid
.             before folding                    after folding
.    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
n                  _|_                   T(n,1) _ _ _ _ _ _ _ _ _ x
1                _|_|_|_                    1  |_| | | | | | | |
2        y     _|_ _|_ _|_     x            3  |_ _| | | | | | |
3            _|_ _ _|_ _ _|_                5  |_ _ _| | | | | |
4          _|_ _ _ _|_ _ _ _|_              7  |_ _ _ _| | | | |
5        _|_ _ _ _ _|_ _ _ _ _|_            9  |_ _ _ _ _| | | |
6      _|_ _ _ _ _ _|_ _ _ _ _ _|_         11  |_ _ _ _ _ _| | |
7    _|_ _ _ _ _ _ _|_ _ _ _ _ _ _|_       13  |_ _ _ _ _ _ _| |
8   |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _|      15  |_ _ _ _ _ _ _ _|
.                                              |
.                                              y
.
Illustration of initial terms of the column 2:
.
.                   2D                                3D
.           Isosceles triangle             Top view of the pyramid
.             before folding                    after folding
.    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
n                  _|_                   T(n,2) _ _ _ _ _ _ _ _ _ x
1                _|_|_|_                    1  |_| | | | | | | |
2        y     _|_ _|_ _|_     x            3  |_ _|_| | | | | |
3            _|_ _|_|_|_ _|_                4  |_ _|  _|_| | | |
4          _|_ _ _|_|_|_ _ _|_              7  |_ _ _|  _ _|_| |
5        _|_ _ _|_ _|_ _|_ _ _|_            6  |_ _ _| |  _ _ _|
6      _|_ _ _ _|_ _|_ _|_ _ _ _|_         11  |_ _ _ _| |
7    _|_ _ _ _|_ _ _|_ _ _|_ _ _ _|_        8  |_ _ _ _| |
8   |_ _ _ _ _|_ _ _|_ _ _|_ _ _ _ _|      15  |_ _ _ _ _|
.                                              |
.                                              y
.
Illustration of initial terms of the column 3:
.
.                   2D                                3D
.           Isosceles triangle             Top view of the pyramid
.             before folding                    after folding
.    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
n                  _|_                   T(n,3) _ _ _ _ _ _ _ _ _ x
1                _|_|_|_                    1  |_| | | | | | | |
2        y     _|_ _|_ _|_     x            3  |_ _|_| | | | | |
3            _|_ _|_|_|_ _|_                4  |_ _|  _|_| | | |
4          _|_ _ _|_|_|_ _ _|_              7  |_ _ _|    _|_| |
5        _|_ _ _|_ _|_ _|_ _ _|_            6  |_ _ _|  _|  _ _|
6      _|_ _ _ _|_|_|_|_|_ _ _ _|_         12  |_ _ _ _|  _|
7    _|_ _ _ _|_ _|_|_|_ _|_ _ _ _|_        8  |_ _ _ _| |
8   |_ _ _ _ _|_ _|_|_|_ _|_ _ _ _ _|      15  |_ _ _ _ _|
.                                              |
.                                              y
.
		

Crossrefs

Column 1 is A005408.
Every diagonal starting with 1 gives A000203.
Columns converge to A000203.
Compare A245093.
Showing 1-7 of 7 results.