cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245489 a(n) = (1^n + (-2)^n + 4^n)/3.

Original entry on oeis.org

1, 1, 7, 19, 91, 331, 1387, 5419, 21931, 87211, 349867, 1397419, 5593771, 22366891, 89483947, 357903019, 1431677611, 5726579371, 22906579627, 91625794219, 366504225451, 1466014804651, 5864063412907, 23456245263019, 93824997829291, 375299957762731
Offset: 0

Views

Author

Michael Somos, Jul 23 2014

Keywords

Examples

			G.f. = 1 + x + 7*x^2 + 19*x^3 + 91*x^4 + 331*x^5 + 1387*x^6 + 5419*x^7 + ...
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> (1 +(-2)^n +4^n)/3); # G. C. Greubel, Sep 21 2019
  • Magma
    [(1^n + (-2)^n + 4^n) / 3 : n in [0..30]]; // Vincenzo Librandi, Jul 25 2014
    
  • Maple
    seq((1 +(-2)^n +4^n)/3, n=0..30); # G. C. Greubel, Sep 21 2019
  • Mathematica
    CoefficientList[Series[(1-2x-2x^2)/((1-x)(1+2x)(1-4x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 25 2014 *)
    LinearRecurrence[{3,6,-8},{1,1,7},30] (* Harvey P. Dale, Dec 04 2018 *)
  • PARI
    {a(n) = (1^n + (-2)^n + 4^n) / 3};
    
  • PARI
    {a(n) = if( n<0, 4^n, 1) * polcoeff( (1 - 2*x - 2*x^2) / ((1 - x) * (1 + 2*x) * (1 - 4*x)) + x * O(x^abs(n)), abs(n))};
    
  • Sage
    [(1 +(-2)^n +4^n)/3 for n in (0..30)] # G. C. Greubel, Sep 21 2019
    

Formula

G.f.: (1 - 2*x - 2*x^2) / ((1 - x) * (1 + 2*x) * (1 - 4*x)).
0 = 8*a(n) - 6*a(n+1) - 3*a(n+2) + a(n+3) for all n in Z.
a(2*n) = A018240(4*n + 3). a(2*n + 1) = A129362(4*n).
a(n) = A001045(3*n)/(3*A001045(n)) for n >= 1. - Peter Bala, Apr 06 2015
E.g.f.: (exp(x) + exp(4*x) + exp(-2*x))/3. - G. C. Greubel, Sep 21 2019