A245639
Prime numbers P such that 8*P^2-1 is also prime.
Original entry on oeis.org
2, 3, 5, 11, 17, 19, 23, 31, 59, 67, 79, 89, 103, 107, 137, 173, 193, 229, 233, 241, 257, 263, 271, 311, 317, 353, 359, 383, 409, 431, 479, 509, 521, 523, 541, 563, 569, 577, 593, 599, 613, 641, 709, 739, 751, 787, 829, 887, 907, 919, 947, 971, 983, 1033
Offset: 1
8*2^2-1=31 prime so a(1)=2.
8*3^2-1=71 prime so a(2)=3.
8*5^2-1=199 prime so a(3)=5.
8*7^2-1=391 composite.
8*11^2-1=967 prime so a(4)=11.
-
[p: p in PrimesUpTo(1500)| IsPrime(8*p^2-1)]; // Vincenzo Librandi, Sep 07 2014
-
Reap[Do[p = Prime[n]; If[PrimeQ[8*p^2-1], Sow[p]], {n, 1, 200}]][[2, 1]] (* Jean-François Alcover, Jul 28 2014 *)
Select[Prime[Range[200]], PrimeQ[8 #^2 - 1] &] (* Vincenzo Librandi, Sep 07 2014 *)
-
select(p->isprime(8*p^2-1), primes(300)) \\ Colin Barker, Jul 28 2014
-
import sympy
from sympy import isprime
from sympy import prime
for n in range(1,10**3):
p = prime(n)
if isprime(8*p**2-1):
print(p,end=', ')
# Derek Orr, Aug 13 2014
A134416
Expansion of eta(q^4)^2 / (eta(q^2) * eta(q)^6) in powers of q.
Original entry on oeis.org
1, 6, 28, 104, 342, 1016, 2808, 7296, 18044, 42750, 97656, 215992, 464360, 973176, 1993328, 3998592, 7870038, 15221232, 28968084, 54311736, 100421688, 183281904, 330468216, 589084288, 1038850488, 1813500030, 3135518440, 5372110496, 9124793472, 15371832424
Offset: 0
G.f. = 1 + 6*q + 28*q^2 + 104*q^3 + 342*q^4 + 1016*q^5 + 2808*q^6 + 7296*q^7 + ...
-
nmax = 40; CoefficientList[Series[Product[(1 + x^k) * (1 + x^(2*k))^2 / (1 - x^k)^5, {k, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
a[ n_] := SeriesCoefficient[ 1 / (EllipticTheta[ 4, 0 , q]^3 EllipticTheta[ 4, 0, q^2]^2), {q, 0, n}]; (* Michael Somos, Oct 16 2015 *)
a[ n_] := SeriesCoefficient[ 1 / (EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q]^4), {q, 0, n}]; (* Michael Somos, Oct 16 2015 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^3 / EllipticTheta[ 4, 0, q^2]^8, {q, 0, n}]; (* Michael Somos, Oct 16 2015 *)
QP = QPochhammer; s = QP[q^4]^2/(QP[q^2]*QP[q]^6) + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 / (eta(x^2 + A) * eta(x + A)^6), n))};
-
q='q+O('q^99); Vec(eta(q^4)^2/(eta(q^2)*eta(q)^6)) \\ Altug Alkan, Apr 16 2018
A263398
Expansion of phi(-x^2)^6 * psi(x^6) / f(x)^2 in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Original entry on oeis.org
1, -2, -7, 14, 20, -36, -34, 40, 50, -30, -71, 76, 82, -144, -98, 112, 131, -70, -140, 170, 168, -288, -228, 232, 246, -120, -290, 258, 310, -468, -280, 344, 337, -190, -350, 394, 412, -648, -510, 496, 462, -252, -583, 558, 602, -864, -532, 584, 664, -350
Offset: 0
G.f. = 1 - 2*x - 7*x^2 + 14*x^3 + 20*x^4 - 36*x^5 - 34*x^6 + 40*x^7 + ...
G.f. = q^2 - 2*q^5 - 7*q^8 + 14*q^11 + 20*q^14 - 36*q^17 - 34*q^20 + ...
-
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^2]^6 EllipticTheta[ 2, 0, x^3] / (2 x^(3/4) QPochhammer[ -x]^2), {x, 0, n}];
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A)^6 * eta(x^12 + A)^2 / (eta(x^4 + A)^4 * eta(x^6 + A)), n))};
-
q='q+O('q^99); Vec(eta(q)^2*eta(q^2)^6*eta(q^12)^2/(eta(q^4)^4*eta(q^6))) \\ Altug Alkan, Jul 31 2018
A266575
Expansion of q * f(-q^4)^6 / phi(-q) in powers of q where phi(), f() are Ramanujan theta functions.
Original entry on oeis.org
1, 2, 4, 8, 8, 12, 16, 16, 25, 28, 28, 32, 40, 40, 48, 64, 48, 62, 76, 64, 80, 92, 80, 96, 121, 100, 112, 128, 120, 136, 160, 128, 144, 184, 152, 200, 200, 164, 208, 224, 192, 216, 252, 224, 248, 296, 224, 256, 337, 262, 312, 320, 280, 336, 368, 320, 336, 396
Offset: 1
G.f. = x + 2*x^2 + 4*x^3 + 8*x^4 + 8*x^5 + 12*x^6 + 16*x^7 + 16*x^8 + ...
-
A := Basis( ModularForms( Gamma1(4), 5/2), 59); A[2];
-
a[ n_] := SeriesCoefficient[ q QPochhammer[ q^4]^6 / EllipticTheta[ 4, 0, q], {q, 0, n}];
a[ n_] := SeriesCoefficient[ 2^-4 EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q]^4, {q, 0, n}];
-
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^6 / eta(x + A)^2, n))};
A242113
a(n) = number of primes of the form k^n - m^k where k > m > 0.
Original entry on oeis.org
0, 1, 2, 6, 7, 2, 14, 7, 11, 10, 33, 10, 42, 35, 47, 39, 122, 22, 248, 113, 247, 236, 751, 75, 1268, 812, 1422, 1531, 4543, 87, 8669, 5750, 8884, 10983, 29084, 2274, 58841, 41242, 58030, 74646, 216647, 11656, 419147, 313237, 364925, 617742, 1576642, 75542, 3071839, 2299620
Offset: 1
a(2) = 1 because 2^2 - 1^2 = 3 is prime;
a(3) = 2 because 2^3 - 1^2 = 7 is prime and 3^3 - 2^3 = 19 is prime, but 2^3 - 2^3 < 0, 5^3 - 2^5 = 93 is not prime, 5^3 - 2^7 = 215 is not prime, 9^3 - 2^9 = 217 is not prime, 11^3 - 2^11 < 0.
More generally, primes of the form k^r - m^k where k > m > 0:
r = 2: 3;
r = 3: 7, 19;
r = 4: 7, 17, 73, 593, 2273, 20369;
r = 5: 7, 23, 31, 179, 58537, 1951811, 1986949;
r = 6: 4818617, 24006497;
r = 7: 7, 47, 79, 103, 127, 1137, 2179, 77101, 162287, 543607, 1706527, 9940951, 6069961193, 25365130463;
r = 8: 31, 6553, 141793, 49046209, 815722529, 16983038753, 499709542049;
r = 9: 71, 151, 223, 431, 463, 487, 503, 4521799, 133227103, 10604491181, 1175888158183;
r = 10: 4177, 37097, 58049, 58537, 1803001, 2486784401, 3486783889, 41426502825041, 819626139497153, 52458394747474721.
-
f[r_] := Length@ Rest@ Union@ Flatten@ Table[ If[ PrimeQ[k^r - m^k], k^r - m^k, 0], {k, 2, 10000000}, {m, Floor[k^(r/k)]}]; Do[ Print[ f[r]], {r, 2, 50}] (* Robert G. Wilson v, Aug 25 2014 *)
A246608
Expansion of phi(-q) * phi(-q^4)^4 in powers of q where phi() is a Ramanujan theta function.
Original entry on oeis.org
1, -2, 0, 0, -6, 16, 0, 0, 8, -50, 0, 0, 16, 80, 0, 0, -38, -96, 0, 0, -16, 160, 0, 0, 48, -242, 0, 0, 64, 240, 0, 0, -56, -288, 0, 0, -150, 400, 0, 0, 112, -384, 0, 0, 112, 496, 0, 0, -112, -674, 0, 0, -80, 560, 0, 0, 160, -672, 0, 0, 192, 880, 0, 0, -294
Offset: 0
G.f. = 1 - 2*q - 6*q^4 + 16*q^5 + 8*q^8 - 50*q^9 + 16*q^12 + 80*q^13 + ...
-
A := Basis( ModularForms( Gamma0(8), 5/2), 68); A[1] - 2*A[2];
-
a[n_]:= SeriesCoefficient[EllipticTheta[3,0, -q]*EllipticTheta[3,0, -q^4 ]^4, {q, 0, n}]; (* corrected by G. C. Greubel, Mar 15 2018 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^8 / (eta(x^2 + A) * eta(x^8 + A)^4), n))};
Showing 1-6 of 6 results.
Comments