cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A245639 Prime numbers P such that 8*P^2-1 is also prime.

Original entry on oeis.org

2, 3, 5, 11, 17, 19, 23, 31, 59, 67, 79, 89, 103, 107, 137, 173, 193, 229, 233, 241, 257, 263, 271, 311, 317, 353, 359, 383, 409, 431, 479, 509, 521, 523, 541, 563, 569, 577, 593, 599, 613, 641, 709, 739, 751, 787, 829, 887, 907, 919, 947, 971, 983, 1033
Offset: 1

Views

Author

Pierre CAMI, Jul 28 2014

Keywords

Examples

			8*2^2-1=31 prime so a(1)=2.
8*3^2-1=71 prime so a(2)=3.
8*5^2-1=199 prime so a(3)=5.
8*7^2-1=391 composite.
8*11^2-1=967 prime so a(4)=11.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1500)| IsPrime(8*p^2-1)]; // Vincenzo Librandi, Sep 07 2014
  • Mathematica
    Reap[Do[p = Prime[n]; If[PrimeQ[8*p^2-1], Sow[p]], {n, 1, 200}]][[2, 1]] (* Jean-François Alcover, Jul 28 2014 *)
    Select[Prime[Range[200]], PrimeQ[8 #^2 - 1] &] (* Vincenzo Librandi, Sep 07 2014 *)
  • PARI
    select(p->isprime(8*p^2-1), primes(300)) \\ Colin Barker, Jul 28 2014
    
  • Python
    import sympy
    from sympy import isprime
    from sympy import prime
    for n in range(1,10**3):
      p = prime(n)
      if isprime(8*p**2-1):
        print(p,end=', ')
    # Derek Orr, Aug 13 2014
    

A134416 Expansion of eta(q^4)^2 / (eta(q^2) * eta(q)^6) in powers of q.

Original entry on oeis.org

1, 6, 28, 104, 342, 1016, 2808, 7296, 18044, 42750, 97656, 215992, 464360, 973176, 1993328, 3998592, 7870038, 15221232, 28968084, 54311736, 100421688, 183281904, 330468216, 589084288, 1038850488, 1813500030, 3135518440, 5372110496, 9124793472, 15371832424
Offset: 0

Views

Author

Michael Somos, Oct 26 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 6*q + 28*q^2 + 104*q^3 + 342*q^4 + 1016*q^5 + 2808*q^6 + 7296*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + x^k) * (1 + x^(2*k))^2 / (1 - x^k)^5, {k, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
    a[ n_] := SeriesCoefficient[ 1 / (EllipticTheta[ 4, 0 , q]^3 EllipticTheta[ 4, 0, q^2]^2), {q, 0, n}]; (* Michael Somos, Oct 16 2015 *)
    a[ n_] := SeriesCoefficient[ 1 / (EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q]^4), {q, 0, n}]; (* Michael Somos, Oct 16 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^3 / EllipticTheta[ 4, 0, q^2]^8, {q, 0, n}]; (* Michael Somos, Oct 16 2015 *)
    QP = QPochhammer; s = QP[q^4]^2/(QP[q^2]*QP[q]^6) + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 / (eta(x^2 + A) * eta(x + A)^6), n))};
    
  • PARI
    q='q+O('q^99); Vec(eta(q^4)^2/(eta(q^2)*eta(q)^6)) \\ Altug Alkan, Apr 16 2018

Formula

Euler transform of period 4 sequence [ 6, 7, 6, 5, ...].
G.f.: Product_{k>0} (1 + x^k) * (1 + x^(2*k))^2 / (1 - x^k)^5. [corrected by Vaclav Kotesovec, Sep 07 2015]
a(n) ~ exp(2*Pi*sqrt(n))/(32*n^2). - Vaclav Kotesovec, Sep 07 2015
-2 * a(n) = A134414(4*n).
Expansion of psi(q^2) / f(-q)^6 = phi(q)^3 / phi(-q^2)^8 = 1 / (phi(-q)^3 * phi(-q^2)^2) = 1 / (phi(q) * phi(-q)^4) in powers of q where phi(), psi(), f() are Ramanujan theta functions. - Michael Somos, Oct 16 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2^(-13/2) (t/i)^(-5/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A134414. - Michael Somos, Oct 16 2015
Convolution inverse is A245643. - Michael Somos, Oct 16 2015

A263398 Expansion of phi(-x^2)^6 * psi(x^6) / f(x)^2 in powers of x where phi(), psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, -7, 14, 20, -36, -34, 40, 50, -30, -71, 76, 82, -144, -98, 112, 131, -70, -140, 170, 168, -288, -228, 232, 246, -120, -290, 258, 310, -468, -280, 344, 337, -190, -350, 394, 412, -648, -510, 496, 462, -252, -583, 558, 602, -864, -532, 584, 664, -350
Offset: 0

Views

Author

Michael Somos, Oct 16 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x - 7*x^2 + 14*x^3 + 20*x^4 - 36*x^5 - 34*x^6 + 40*x^7 + ...
G.f. = q^2 - 2*q^5 - 7*q^8 + 14*q^11 + 20*q^14 - 36*q^17 - 34*q^20 + ...
		

Crossrefs

Cf. A245643.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^2]^6 EllipticTheta[ 2, 0, x^3] / (2 x^(3/4) QPochhammer[ -x]^2), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A)^6 * eta(x^12 + A)^2 / (eta(x^4 + A)^4 * eta(x^6 + A)), n))};
    
  • PARI
    q='q+O('q^99); Vec(eta(q)^2*eta(q^2)^6*eta(q^12)^2/(eta(q^4)^4*eta(q^6))) \\ Altug Alkan, Jul 31 2018

Formula

Expansion of q^(-2/3) * eta(q)^2 * eta(q^2)^6 * eta(q^12)^2 / (eta(q^4)^4 * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [-2, -8, -2, -4, -2, -7, -2, -4, -2, -8, -2, -5, ...].
8 * a(n) = A245643(3*n + 2).

A266575 Expansion of q * f(-q^4)^6 / phi(-q) in powers of q where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 4, 8, 8, 12, 16, 16, 25, 28, 28, 32, 40, 40, 48, 64, 48, 62, 76, 64, 80, 92, 80, 96, 121, 100, 112, 128, 120, 136, 160, 128, 144, 184, 152, 200, 200, 164, 208, 224, 192, 216, 252, 224, 248, 296, 224, 256, 337, 262, 312, 320, 280, 336, 368, 320, 336, 396
Offset: 1

Views

Author

Michael Somos, Jan 03 2016

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = x + 2*x^2 + 4*x^3 + 8*x^4 + 8*x^5 + 12*x^6 + 16*x^7 + 16*x^8 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(4), 5/2), 59); A[2];
  • Mathematica
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q^4]^6 / EllipticTheta[ 4, 0, q], {q, 0, n}];
    a[ n_] := SeriesCoefficient[ 2^-4 EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q]^4, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^6 / eta(x + A)^2, n))};
    

Formula

Expansion of q * phi(q) * psi(q^2)^4 in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q^2) * eta(q^4)^6 / eta(q)^2 in powers of q.
Euler transform of period 4 sequence [2, 1, 2, -5, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2^(-3/2) (t/I)^(5/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A245643.
G.f.: x * Product_{k>0} (1 + x^k) * (1 - x^(4*k))^6 / (1 - x^k).
Convolution inverse of A134414.

A242113 a(n) = number of primes of the form k^n - m^k where k > m > 0.

Original entry on oeis.org

0, 1, 2, 6, 7, 2, 14, 7, 11, 10, 33, 10, 42, 35, 47, 39, 122, 22, 248, 113, 247, 236, 751, 75, 1268, 812, 1422, 1531, 4543, 87, 8669, 5750, 8884, 10983, 29084, 2274, 58841, 41242, 58030, 74646, 216647, 11656, 419147, 313237, 364925, 617742, 1576642, 75542, 3071839, 2299620
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 15 2014

Keywords

Comments

It would be good to have a proof that a(n) is always finite. - N. J. A. Sloane, Sep 06 2014

Examples

			a(2) = 1 because  2^2 - 1^2 = 3 is prime;
a(3) = 2 because  2^3 - 1^2 = 7 is prime and 3^3 - 2^3 = 19 is prime, but 2^3 - 2^3 < 0, 5^3 - 2^5 = 93 is not prime, 5^3 - 2^7 = 215 is not prime, 9^3 - 2^9 = 217 is not prime, 11^3 - 2^11 < 0.
More generally, primes of the form k^r - m^k where  k > m > 0:
r = 2: 3;
r = 3: 7, 19;
r = 4: 7, 17, 73, 593, 2273, 20369;
r = 5: 7, 23, 31, 179, 58537, 1951811, 1986949;
r = 6: 4818617, 24006497;
r = 7: 7, 47, 79, 103, 127, 1137, 2179, 77101, 162287, 543607, 1706527, 9940951, 6069961193, 25365130463;
r = 8: 31, 6553, 141793, 49046209, 815722529, 16983038753, 499709542049;
r = 9: 71, 151, 223, 431, 463, 487, 503, 4521799, 133227103, 10604491181, 1175888158183;
r = 10: 4177, 37097, 58049, 58537, 1803001, 2486784401, 3486783889, 41426502825041, 819626139497153, 52458394747474721.
		

Crossrefs

Programs

  • Mathematica
    f[r_] := Length@ Rest@ Union@ Flatten@ Table[ If[ PrimeQ[k^r - m^k], k^r - m^k, 0], {k, 2, 10000000}, {m, Floor[k^(r/k)]}]; Do[ Print[ f[r]], {r, 2, 50}] (* Robert G. Wilson v, Aug 25 2014 *)

Formula

a(n) >= A245459(n).

Extensions

a(10)-a(50) from Robert G. Wilson v, Aug 25 2014

A246608 Expansion of phi(-q) * phi(-q^4)^4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 0, 0, -6, 16, 0, 0, 8, -50, 0, 0, 16, 80, 0, 0, -38, -96, 0, 0, -16, 160, 0, 0, 48, -242, 0, 0, 64, 240, 0, 0, -56, -288, 0, 0, -150, 400, 0, 0, 112, -384, 0, 0, 112, 496, 0, 0, -112, -674, 0, 0, -80, 560, 0, 0, 160, -672, 0, 0, 192, 880, 0, 0, -294
Offset: 0

Views

Author

Michael Somos, Sep 01 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q - 6*q^4 + 16*q^5 + 8*q^8 - 50*q^9 + 16*q^12 + 80*q^13 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(8), 5/2), 68); A[1] - 2*A[2];
  • Mathematica
    a[n_]:= SeriesCoefficient[EllipticTheta[3,0, -q]*EllipticTheta[3,0, -q^4 ]^4, {q, 0, n}]; (* corrected by G. C. Greubel, Mar 15 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^8 / (eta(x^2 + A) * eta(x^8 + A)^4), n))};
    

Formula

Expansion of eta(q)^2 * eta(q^4)^8 / (eta(q^2) * eta(q^8)^4) in powers of q.
a(4*n) = A245643(n). a(4*n + 1) = -2 * A244276(n). a(4*n + 2) = a(4*n + 3) = 0.
Showing 1-6 of 6 results.