A268136
a(n) = (3/n)*Sum_{k=0..n-1} A245769(k)^2.
Original entry on oeis.org
3, 3, 51, 507, 4947, 58243, 841443, 14240763, 269512483, 5524472451, 120183938835, 2738420763131, 64760819179635, 1579226738429187, 39515677808716739, 1010750709382934523, 26349289260686093379, 698387854199468231427, 18783213754115549685747, 511772677524431483886075
Offset: 1
a(3) = 51 since (3/3)*(A245769(0)^2 + A245769(1)^2 + A245769(2)^2) = (-1)^2 + 1^2 + 7^2 = 51.
-
R[n_]:=Sum[Binomial[n,k]Binomial[n+k,k]/(2k-1),{k,0,n}]
a[n_]:=Sum[R[k]^2,{k,0,n-1}]*3/n
Do[Print[n," ",a[n]],{n,1,20}]
Original entry on oeis.org
-1, 1, 31, 417, 5919, 97217, 1828479, 38085249, 853450367, 20174707521, 496690317855, 12626836592289, 329476040177439, 8785359461936769, 238587766484265471, 6581966817521388033, 184067922884292651519, 5209333642085984431489, 148992465188631205367071, 4301514890878664802287777
Offset: 1
a(3) = 31 since (A001850(0)*A245769(0) + A001850(1)*A245769(1) + A001850(2)*A245769(2))/3 = (1*(-1) + 3*1 + 13*7)/3 = 93/3 = 31.
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100
- Zhi-Wei Sun, Two new kinds of numbers and related divisibility results, preprint, arXiv:1408.5381 [math.NT], 2014.
- Zhi-Wei Sun, Arithmetic properties of Delannoy numbers and Schröder numbers, preprint, arXiv:1602.00574 [math.CO], 2016.
-
d[n_]:=d[n]=Sum[Binomial[n,k]Binomial[n+k,k],{k,0,n}]
R[n_]:=R[n]=Sum[Binomial[n,k]Binomial[n+k,k]/(2k-1),{k,0,n}]
a[n_]:=a[n]=Sum[d[k]*R[k],{k,0,n-1}]/n
Do[Print[n," ",a[n]],{n,1,20}]
A246460
a(n) = (sum_{k=0}^{n-1} (2k+1)*C(n-1,k)^2*C(n+k,k)^2)/n^2, where C(n,k) denotes the binomial coefficient n!/(k!(n-k)!).
Original entry on oeis.org
1, 7, 77, 1211, 23009, 489035, 11203765, 270937315, 6825612185, 177559028087, 4739821161173, 129244697791951, 3587524535220001, 101099089948850323, 2886373390151379397, 83343790441133767475, 2430567530705659113545, 71508611747063572974095, 2120357936904537499679125, 63315310358625743871987019
Offset: 1
a(2) = 7 since sum_{k=0,1} (2k+1)C(1,k)^2*C(2+k,k)^2 = 1 + 3*3^2 = 28 = 2^2*7.
-
A246460:=n->add((2*k+1)*binomial(n-1,k)^2*binomial(n+k,k)^2/n^2, k=0..n-1): seq(A246460(n), n=1..20); # Wesley Ivan Hurt, Aug 26 2014
-
a[n_]:=Sum[(2k+1)*Binomial[n-1,k]^2*Binomial[n+k,k]^2,{k,0,n-1}]/n^2
Table[a[n],{n,1,20}]
A246065
a(n) = Sum_{k=0..n}C(n,k)^2*C(2k,k)/(2k-1), where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
Original entry on oeis.org
-1, 1, 9, 39, 177, 927, 5463, 34857, 234657, 1641471, 11820135, 87080265, 653499135, 4979882385, 38441107305, 300027646647, 2364113123073, 18784242756927, 150351698420247, 1211310469545081, 9816017765368671, 79963826730913809, 654504197331971961, 5380270242617370951
Offset: 0
a(2) = 9 since Sum_{k=0,1,2}C(2,k)^2*C(2k,k)/(2k-1) = -1 + 8 + 6/3 = 9.
-
a := n -> -hypergeom([-1/2, -n, -n], [1, 1], 4):
seq(simplify(a(n)), n=0..23); # Peter Luschny, Nov 07 2023
ogf := -(1-9*x)^(1/4)*hypergeom([-1/4, 3/4],[1],64*x^3/((1-9*x)*(x-1)^3))/(1-x)^(5/4);
series(ogf, x=0, 25); # Mark van Hoeij, Nov 12 2023
-
a[n_]:=Sum[Binomial[n,k]^2*Binomial[2k,k]/(2k-1),{k,0,n}]
Table[a[n],{n,0,20}]
A246459
a(n) = Sum_{k=0..n} C(n,k)^2*C(2k,k)*(2k+1), where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
Original entry on oeis.org
1, 7, 55, 465, 4047, 35673, 316521, 2819295, 25173855, 225157881, 2016242265, 18070920255, 162071863425, 1454320387575, 13055422263255, 117237213829953, 1053070838993151, 9461217421304505, 85019389336077225, 764113545253570191, 6868417199986308129
Offset: 0
a(2) = 55 since Sum_{k=0,1,2} C(2,k)^2*C(2k,k)(2k+1) = 1 + 8*3 + 6*5 = 55.
-
A246459:=n->add(binomial(n,k)^2*binomial(2*k,k)*(2*k+1), k=0..n): seq(A246459(n), n=0..20); # Wesley Ivan Hurt, Aug 26 2014
-
a[n_]:=Sum[Binomial[n,k]^2*Binomial[2k,k](2k+1),{k,0,n}]
Table[a[n],{n,0,20}]
A246461
a(n) = Sum_{k=0..n} ((2k+1)*C(n,k)*C(n+k,k))^2, where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
Original entry on oeis.org
1, 37, 1225, 43397, 1563401, 56309885, 2020496185, 72190600165, 2569004841385, 91095128385485, 3220006254279233, 113505318773615741, 3991330807880182105, 140050346341652428141, 4904787249549605102233, 171480516047539645266725
Offset: 0
a(1) = 37 since Sum_{k=0..1} ((2k+1)*C(1,k)*C(1+k,k))^2 = 1^2 + (3*2)^2 = 37.
-
A246461:=n->add(((2*k+1)*binomial(n,k)*binomial(n+k,k))^2, k=0..n): seq(A246461(n), n=0..20); # Wesley Ivan Hurt, Aug 26 2014
-
a[n_]:=Sum[((2k+1)*Binomial[n,k]*Binomial[n+k,k])^2,{k,0,n}]
Table[a[n],{n,0,15}]
A246462
a(n) = Sum_{k=0..n} (2k+1)*C(n,k)^2*C(n+k,k)^2, where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
Original entry on oeis.org
1, 13, 289, 7733, 223001, 6689045, 205569505, 6422252485, 203029535305, 6476057609045, 208013166524153, 6718923443380109, 218021269879802377, 7101635058978727909, 232072490781790669153, 7604916953685880646885
Offset: 0
a(1) = 13 since Sum_{k=0..1} (2k+1)*C(1,k)^2*C(1+k,k)^2 = 1 + 3*2^2 = 13.
-
A246462:=n->add((2*k+1)*binomial(n,k)^2*binomial(n+k,k)^2, k=0..n): seq(A246462(n), n=0..20); # Wesley Ivan Hurt, Aug 27 2014
-
a[n_]:=Sum[(2k+1)*Binomial[n,k]^2*Binomial[n+k,k]^2,{k,0,n}]
Table[a[n],{n,0,15}]
Showing 1-7 of 7 results.
Comments