cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A245732 Number T(n,k) of endofunctions on [n] such that at least one preimage with cardinality >=k exists and a nonempty preimage of j implies that all i<=j have preimages with cardinality >=k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 4, 3, 1, 27, 13, 1, 1, 256, 75, 7, 1, 1, 3125, 541, 21, 1, 1, 1, 46656, 4683, 141, 21, 1, 1, 1, 823543, 47293, 743, 71, 1, 1, 1, 1, 16777216, 545835, 5699, 183, 71, 1, 1, 1, 1, 387420489, 7087261, 42241, 2101, 253, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 30 2014

Keywords

Comments

T(0,0) = 1 by convention.
In general, column k > 1 is asymptotic to n! / ((1+r^(k-1)/(k-1)!) * r^(n+1)), where r is the root of the equation 2 - exp(r) + Sum_{j=1..k-1} r^j/j! = 0. - Vaclav Kotesovec, Aug 02 2014

Examples

			Triangle T(n,k) begins:
0 :         1;
1 :         1,      1;
2 :         4,      3,    1;
3 :        27,     13,    1,   1;
4 :       256,     75,    7,   1,  1;
5 :      3125,    541,   21,   1,  1, 1;
6 :     46656,   4683,  141,  21,  1, 1, 1;
7 :    823543,  47293,  743,  71,  1, 1, 1, 1;
8 :  16777216, 545835, 5699, 183, 71, 1, 1, 1, 1;
		

Crossrefs

Column k=0 gives A000312.
Columns k=1-10 give (for n>0): A000670, A032032, A102233, A232475, A245790, A245791, A245792, A245793, A245794, A245795.
T(2n,n) gives A244174(n) or 1+A007318(2n,n) = 1+A000984(n) for n>0.
Cf. A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    T:= (n, k)-> `if`(k=0, n^n, `if`(n=0, 0, b(n, k))):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n-j, k]*Binomial[n, j], {j, k, n}]]; T[n_, k_] := If[k == 0, n^n, If[n == 0, 0, b[n, k]]]; T[0, 0] = 1; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 05 2015, after Alois P. Heinz *)

Formula

E.g.f. (for column k > 0): 1/(2 -exp(x) +Sum_{j=1..k-1} x^j/j!) -1. - Vaclav Kotesovec, Aug 02 2014

A343542 Number of ways to partition n labeled elements into sets of different sizes of at least 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 463, 793, 3004, 5006, 14444, 23817, 62323, 14805403, 35175993, 177791475, 745977222, 2333540804, 7589340982, 29027728612, 81515120641, 23232813583331, 69799133324911, 436678552247551, 2215090972333651, 13529994077951557, 48863594588239153
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 28 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i>n, 0, b(n, i+1)+binomial(n, i)*b(n-i, i+1)))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=0..31);  # Alois P. Heinz, Apr 28 2021
  • Mathematica
    nmax = 31; CoefficientList[Series[Product[(1 + x^k/k!), {k, 5, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -(n - 1)! Sum[DivisorSum[k, # (-#!)^(-k/#) &, # > 4 &] a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 31}]

Formula

E.g.f.: Product_{k>=5} (1 + x^k/k!).

A365915 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(2*k+5) / (2*k+5)! ).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 252, 1, 1584, 1, 7436, 756757, 31616, 14702689, 129404, 189559657, 11733266992, 2062481617, 516242875084, 20611819933, 14135172627712, 623557476714481, 312148517693820, 52096977907924561, 6121122865591920
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x+x^3/6-sinh(x))))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-5)/2)} binomial(n,2*k+5) * a(n-2*k-5).
E.g.f.: 1 / ( 1 + x + x^3/6 - sinh(x) ).

A365917 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(4*k+5) / (4*k+5)! ).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 252, 0, 0, 1, 4004, 756756, 0, 1, 65756, 69837768, 11732745024, 1, 1047508, 5772957036, 3957845988096, 623360743125121, 16781260, 475191562560, 1078063276530240, 587517500395425601, 88832646060056769732, 38604505286340
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1+x-(sinh(x)+sin(x))/2)))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-5)/4)} binomial(n,4*k+5) * a(n-4*k-5).
E.g.f.: 1 / ( 1 + x - (sinh(x) + sin(x))/2 ).

A245857 Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 4.

Original entry on oeis.org

1, 0, 0, 0, 70, 252, 420, 660, 35640, 271700, 1389388, 5137860, 79463020, 905649500, 7336909980, 48400150764, 573924746400, 7735300382250, 85942063340210, 795156908528290, 9670781421636258, 143772253669334950, 1993964186469438950, 24015169625528033550
Offset: 4

Views

Author

Alois P. Heinz, Aug 04 2014

Keywords

Crossrefs

Column k=4 of A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    a:= n-> b(n, 4) -b(n, 5):
    seq(a(n), n=4..30);

Formula

E.g.f.: 1/(1-Sum_{j>=4} x^j/j!) - 1/(1-Sum_{j>=5} x^j/j!).
a(n) = A232475(n) - A245790(n) = A245732(n,4) - A245732(n,5).

A245858 Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 252, 924, 1584, 2574, 4004, 762762, 6062784, 31868200, 121314312, 399096216, 12936646128, 167685283332, 1429020461484, 9754485257594, 55756633204272, 905519956068420, 14816352889289380, 179362257853420980, 1745771827872126600
Offset: 5

Views

Author

Alois P. Heinz, Aug 04 2014

Keywords

Crossrefs

Column k=5 of A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    a:= n-> b(n, 5) -b(n, 6):
    seq(a(n), n=5..30);

Formula

E.g.f.: 1/(1-Sum_{j>=5} x^j/j!) - 1/(1-Sum_{j>=6} x^j/j!).
a(n) = A245790(n) - A245791(n) = A245732(n,5) - A245732(n,6).

A365916 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(3*k+5) / (3*k+5)! ).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 252, 1, 0, 2574, 1, 756756, 21606, 1, 33081048, 174420, 11732745025, 1052328186, 1397640, 1484192245537, 30223445274, 623360754309330, 126750660276241, 835509726090, 182333017453575330, 9309138073555321
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\3, x^(3*k+5)/(3*k+5)!))))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-5)/3)} binomial(n,3*k+5) * a(n-3*k-5).
Showing 1-7 of 7 results.