A245732
Number T(n,k) of endofunctions on [n] such that at least one preimage with cardinality >=k exists and a nonempty preimage of j implies that all i<=j have preimages with cardinality >=k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 4, 3, 1, 27, 13, 1, 1, 256, 75, 7, 1, 1, 3125, 541, 21, 1, 1, 1, 46656, 4683, 141, 21, 1, 1, 1, 823543, 47293, 743, 71, 1, 1, 1, 1, 16777216, 545835, 5699, 183, 71, 1, 1, 1, 1, 387420489, 7087261, 42241, 2101, 253, 1, 1, 1, 1, 1
Offset: 0
Triangle T(n,k) begins:
0 : 1;
1 : 1, 1;
2 : 4, 3, 1;
3 : 27, 13, 1, 1;
4 : 256, 75, 7, 1, 1;
5 : 3125, 541, 21, 1, 1, 1;
6 : 46656, 4683, 141, 21, 1, 1, 1;
7 : 823543, 47293, 743, 71, 1, 1, 1, 1;
8 : 16777216, 545835, 5699, 183, 71, 1, 1, 1, 1;
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
T:= (n, k)-> `if`(k=0, n^n, `if`(n=0, 0, b(n, k))):
seq(seq(T(n, k), k=0..n), n=0..12);
-
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n-j, k]*Binomial[n, j], {j, k, n}]]; T[n_, k_] := If[k == 0, n^n, If[n == 0, 0, b[n, k]]]; T[0, 0] = 1; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 05 2015, after Alois P. Heinz *)
A343542
Number of ways to partition n labeled elements into sets of different sizes of at least 5.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 463, 793, 3004, 5006, 14444, 23817, 62323, 14805403, 35175993, 177791475, 745977222, 2333540804, 7589340982, 29027728612, 81515120641, 23232813583331, 69799133324911, 436678552247551, 2215090972333651, 13529994077951557, 48863594588239153
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, b(n, i+1)+binomial(n, i)*b(n-i, i+1)))
end:
a:= n-> b(n, 5):
seq(a(n), n=0..31); # Alois P. Heinz, Apr 28 2021
-
nmax = 31; CoefficientList[Series[Product[(1 + x^k/k!), {k, 5, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -(n - 1)! Sum[DivisorSum[k, # (-#!)^(-k/#) &, # > 4 &] a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 31}]
A365915
Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(2*k+5) / (2*k+5)! ).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 252, 1, 1584, 1, 7436, 756757, 31616, 14702689, 129404, 189559657, 11733266992, 2062481617, 516242875084, 20611819933, 14135172627712, 623557476714481, 312148517693820, 52096977907924561, 6121122865591920
Offset: 0
A365917
Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(4*k+5) / (4*k+5)! ).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 252, 0, 0, 1, 4004, 756756, 0, 1, 65756, 69837768, 11732745024, 1, 1047508, 5772957036, 3957845988096, 623360743125121, 16781260, 475191562560, 1078063276530240, 587517500395425601, 88832646060056769732, 38604505286340
Offset: 0
A245857
Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 4.
Original entry on oeis.org
1, 0, 0, 0, 70, 252, 420, 660, 35640, 271700, 1389388, 5137860, 79463020, 905649500, 7336909980, 48400150764, 573924746400, 7735300382250, 85942063340210, 795156908528290, 9670781421636258, 143772253669334950, 1993964186469438950, 24015169625528033550
Offset: 4
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
a:= n-> b(n, 4) -b(n, 5):
seq(a(n), n=4..30);
A245858
Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 5.
Original entry on oeis.org
1, 0, 0, 0, 0, 252, 924, 1584, 2574, 4004, 762762, 6062784, 31868200, 121314312, 399096216, 12936646128, 167685283332, 1429020461484, 9754485257594, 55756633204272, 905519956068420, 14816352889289380, 179362257853420980, 1745771827872126600
Offset: 5
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
a:= n-> b(n, 5) -b(n, 6):
seq(a(n), n=5..30);
A365916
Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(3*k+5) / (3*k+5)! ).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 252, 1, 0, 2574, 1, 756756, 21606, 1, 33081048, 174420, 11732745025, 1052328186, 1397640, 1484192245537, 30223445274, 623360754309330, 126750660276241, 835509726090, 182333017453575330, 9309138073555321
Offset: 0
Showing 1-7 of 7 results.
Comments