A306967
a(n) is the first Zagreb index of the Fibonacci cube Gamma(n).
Original entry on oeis.org
2, 6, 22, 54, 132, 292, 626, 1290, 2594, 5102, 9864, 18792, 35362, 65838, 121454, 222246, 403788, 728972, 1308562, 2336946, 4154170, 7353310, 12965904, 22781520, 39897410, 69662166, 121292998, 210642966, 364928532, 630794356
Offset: 1
a(2) = 6 because the Fibonacci cube Gamma(2) is the path-tree P_3 having 2 vertices of degree 1 and 1 vertex of degree 2; consequently, the Zagreb index is 1^2 + 1^2 + 2^2 = 6 (or (1 + 2) + (2 + 1) = 6).
- S. Klavžar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., 25, 2013, 505-522.
- S. Klavžar, M. Mollard and M. Petkovšek, The degree sequence of Fibonacci and Lucas cubes, Discrete Mathematics, Vol. 311, No. 14 (2011), 1310-1322.
-
T:=(n,k) -> sum(binomial(n - 2*i, k - i) * binomial(i + 1, n - k - i + 1), i = 0..k): seq(add(T(n, k)*k^2, k=1..n), n=1..30);
A307157
a(n) is the Narumi-Katayama index of the Fibonacci cube Gamma(n).
Original entry on oeis.org
1, 2, 24, 1152, 1399680, 290237644800, 520105859481600000000, 3435834286784202670080000000000000000, 3045775242579858715944293498880000000000000000000000000000000000
Offset: 1
a(2)=2 because the Fibonacci cube Gamma(2) is the path tree P_3 having 2 vertices of degree 1 and 1 vertex of degree 2; consequently, the Narumi-Katayama index is 1*1*2=2.
- I. Gutman and M. Ghorbani, Some properties of the Narumi-Katayama index, Applied Mathematics Letters, Vol. 25, No. 10 (2012), 1435-1438.
- S. Klavžar, Structure of Fibonacci cubes: a survey, Journal of Combinatorial Optimization, Vol. 25, No. 4 (2013), 505-522.
- S. Klavžar, M. Mollard and M. Petkovšek, The degree sequence of Fibonacci and Lucas cubes, Discrete Mathematics, Vol. 311, No. 14 (2011), 1310-1322.
-
T := (n,k) -> add(binomial(n-2*i,k-i)*binomial(i+1,n-k-i+1), i=0..k):
seq(mul(j^T(n,j), j=1..n), n=1..10);
A307580
a(n) is the second multiplicative Zagreb index of the Fibonacci cube Gamma(n).
Original entry on oeis.org
1, 4, 1728, 191102976, 137105941502361600000, 27038645743755029502156994133360640000000000, 645557379413314860145212937623335060473992141864960000000000000000000000000000000000000000
Offset: 1
a(2) = 4 because the Fibonacci cube Gamma(2) is the path-tree P_3 having 2 vertices of degree 1 and 1 vertex of degree 2; consequently, a(2) = 1^1*1^1*2^2 = 4.
a(4) = 191102976 because the Fibonacci cube Gamma(4) has 5 vertices of degree 2, 2 vertices of degree 3, and 1 vertex of degree 4; consequently, a(4) = (2^2)^5*(3^3)^2*4^4 = 191102976.
- Alois P. Heinz, Table of n, a(n) for n = 1..10
- I. Gutman, Multiplicative Zagreb indices of trees, Bulletin of International Mathematical Virtual Institute ISSN 1840-4367, Vol. 1, 2011, 13-19.
- S. Klavžar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., 25, 2013, 505-522.
- S. Klavžar, M. Mollard and M. Petkovšek, The degree sequence of Fibonacci and Lucas cubes, Discrete Mathematics, Vol. 311, No. 14 (2011), 1310-1322.
-
T := (n,k)-> add(binomial(n-2*i,k-i)*binomial(i+1,n-k-i+1), i=0..k):
seq(mul(k^(k*T(n,k)), k=1..n), n=1..7);
A307208
a(n) is the forgotten index of the Fibonacci cube Gamma(n).
Original entry on oeis.org
2, 10, 52, 158, 466, 1192, 2914, 6722, 14972, 32286, 67914, 139824, 282754, 562970, 1105892, 2146846, 4124258, 7849496, 14815202, 27752338, 51632620, 95465502, 175508250, 320981472, 584214530, 1058602666, 1910305300, 3434059166, 6151218034, 10981579528
Offset: 1
a(2) = 10 because the Fibonacci cube Gamma(2) is the path-tree P_3 having 2 vertices of degree 1 and 1 vertex of degree 2; consequently, the forgotten index is 1^3 + 1^3 + 2^3 = 10.
- B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (4), 1184-1190, 2015.
- S. Klavžar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., 25, 2013, 505-522.
- S. Klavžar, M. Mollard and M. Petkovšek, The degree sequence of Fibonacci and Lucas cubes, Discrete Mathematics, Vol. 311, No. 14 (2011), 1310-1322.
-
T := (n,k) -> add(binomial(n-2*i, k-i)*binomial(i+1, n-k-i+1), i=0..k):
seq(add(T(n,k)*k^3, k=1..n), n=1..30);
-
T(n,k) = sum(i=0, k, binomial(n-2*i, k-i)*binomial(i+1, n-k-i+1));
a(n) = sum(k=1, n, T(n,k)*k^3); \\ Michel Marcus, Mar 30 2019
Showing 1-4 of 4 results.
Comments