cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A331371 Numbers k such that k and k+1 are both half-Zumkeller numbers (A246198).

Original entry on oeis.org

224, 440, 1224, 2024, 3968, 5624, 11024, 18224, 35720, 38024, 50624, 53360, 65024, 74528, 81224, 140624, 148224, 159200, 164024, 184040, 189224, 194480, 207024, 216224, 233288, 245024, 314720, 354024, 370880, 378224, 416024, 423800, 442224, 455624, 497024, 511224
Offset: 1

Views

Author

Amiram Eldar, May 03 2020

Keywords

Examples

			224 is a term since both 224 and 225 are half-Zumkeller numbers: the proper divisors of 224 are {1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 112} and 1 + 2 + 4 + 7 + 8 + 14 + 16 + 32 + 56 = 28 + 112, and the proper divisors of 225 are {1, 3, 5, 9, 15, 25, 45, 75} and 1 + 3 + 15 + 25 + 45 = 5 + 9 + 75.
		

Crossrefs

Programs

  • Mathematica
    hzQ[n_] := Module[{d = Most @ Divisors[n], sum, x}, sum = Plus @@ d; EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; hzq1 = False; s = {}; Do[hzq2 = hzQ[n]; If[hzq1 && hzq2, AppendTo[s, n - 1]]; hzq1 = hzq2, {n, 2, 6000}]; s

A246199 Odd half-Zumkeller numbers.

Original entry on oeis.org

225, 441, 1225, 2025, 3969, 5625, 11025, 18225, 21609, 27225, 35721, 38025, 50625, 53361, 65025, 74529, 81225, 99225, 119025, 127449, 140625, 148225, 159201, 164025, 184041, 189225, 194481, 207025, 216225, 233289, 245025, 275625, 308025, 314721, 321489
Offset: 1

Views

Author

Chai Wah Wu, Aug 21 2014

Keywords

Comments

Zumkeller numbers are numbers whose positive divisors can be partitioned into two disjoint sets whose sums are equal (A083207). Half-Zumkeller numbers are numbers whose proper positive divisors can be partitioned into two disjoint sets whose sums are equal (A246198). All numbers in the sequence are not Zumkeller numbers. This is easily seen as the sum of proper divisors is even to be half-Zumkeller, and therefore the sum of the divisors must be odd and thus not Zumkeller.

References

  • S. Clark et al., Zumkeller numbers, Mathematical Abundance Conference, April 2008.

Crossrefs

Odd numbers in A246198.
Cf. A083207.

Programs

  • Python
    from sympy import divisors
    import numpy as np
    A246199 = []
    for n in range(3, 10**5, 2):
        d = divisors(n)
        d.remove(n)
        s, dmax = sum(d), max(d)
        if not s % 2 and 2*dmax <= s:
            d.remove(dmax)
            s2, ld = int(s/2-dmax), len(d)
            z = np.zeros((ld+1, s2+1), dtype=int)
            for i in range(1, ld+1):
                y = min(d[i-1], s2+1)
                z[i, range(y)] = z[i-1, range(y)]
                z[i, range(y, s2+1)] = np.maximum(z[i-1, range(y, s2+1)], z[i-1, range(0, s2+1-y)]+y)
                if z[i, s2] == s2:
                    A246199.append(n)
                    break

A290467 Unitary half-Zumkeller numbers: numbers k whose unitary proper divisors can be partitioned into two disjoint sets whose sums are equal.

Original entry on oeis.org

6, 12, 20, 30, 42, 56, 60, 66, 70, 72, 78, 84, 90, 102, 114, 120, 138, 150, 168, 174, 180, 186, 210, 220, 222, 240, 246, 252, 258, 272, 280, 282, 294, 318, 330, 354, 360, 364, 366, 390, 402, 420, 426, 438, 440, 462, 474, 498, 510, 520, 532, 534, 546, 560, 570, 582, 606, 618
Offset: 1

Views

Author

Ivan N. Ianakiev, Aug 03 2017

Keywords

Comments

Unitary divisors of n are divisors d such that gcd(d,n/d)=1.
Seemingly, a subsequence of A246198 (half-Zumkeller numbers).
The conjecture above is false, since 72, 3600 and 19600 do not belong to A246198. - Ivan N. Ianakiev, Jan 08 2025

Examples

			The set of unitary proper divisors of 12 is {1,3,4}. It can be partitioned into two disjoint subsets with equal sums of elements: {1,3} and {4}, therefore 12 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    uPropDiv[n_/;n>1]:=Block[{d=Most[Divisors[n]]},Select[d,GCD[#,n/#]==1&]];uhZNQ[n_]:=Module[{d=uPropDiv[n],t,ds,x},ds=Plus@@d;If[Mod[ds,2]>0,False,t=CoefficientList[Product[1+x^i,{i,d}],x];t[[1+ds/2]]>0]];Select[Range[10^3],uhZNQ] (* combined from the code by Robert G. Wilson v at A034448 and T. D. Noe at A083207 *)

A322658 Integers whose set of proper divisors, excluding 1, can be partitioned into two nonempty subsets having equal sum.

Original entry on oeis.org

36, 72, 105, 144, 195, 200, 255, 288, 315, 324, 345, 385, 392, 400, 450, 495, 525, 576, 585, 648, 675, 735, 784, 800, 805, 825, 855, 882, 900, 945, 975, 1035, 1152, 1155, 1295, 1296, 1305, 1323, 1365, 1395, 1425, 1449, 1463, 1485, 1547, 1568, 1575, 1600, 1645, 1665, 1755, 1764, 1785
Offset: 1

Views

Author

Michel Marcus, Dec 22 2018

Keywords

Comments

Called half-layered numbers in Behzadipour link.

Examples

			36 is a term with {2, 3, 4, 18} and B = {6, 9, 12} having equal sums 27.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k, l, t, b; b:=
          proc(m, i) option remember; m=0 or i>0 and
            (b(m, i-1) or l[i]<=m and b(m-l[i], i-1)) end;
          for k from 1+`if`(n=1, 1, a(n-1)) do
            if isprime(k) then next fi;
            l:= sort([(numtheory[divisors](k) minus {1, k})[]]);
            t:= add(i, i=l);
            if t::even then forget(b);
              if b(t/2, nops(l)) then return k fi
            fi
          od
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Dec 22 2018
  • Mathematica
    aQ[n_] := CompositeQ[n] && Module[{d = Rest[Most[Divisors[n]]], t, ds, x}, ds = Plus @@ d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[2, 1785], aQ]  (* Amiram Eldar, Dec 22 2018 after T. D. Noe at A083207 *)
  • PARI
    part(n, v)=if(n<1, return(n==0)); forstep(i=#v, 2, -1, if(part(n-v[i], v[1..i-1]), return(1))); n==v[1];
    is(n)=my(d=divisors(n), dd = select(x->((x>1) && (xA083207
Showing 1-4 of 4 results.