A331371 Numbers k such that k and k+1 are both half-Zumkeller numbers (A246198).
224, 440, 1224, 2024, 3968, 5624, 11024, 18224, 35720, 38024, 50624, 53360, 65024, 74528, 81224, 140624, 148224, 159200, 164024, 184040, 189224, 194480, 207024, 216224, 233288, 245024, 314720, 354024, 370880, 378224, 416024, 423800, 442224, 455624, 497024, 511224
Offset: 1
Keywords
Examples
224 is a term since both 224 and 225 are half-Zumkeller numbers: the proper divisors of 224 are {1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 112} and 1 + 2 + 4 + 7 + 8 + 14 + 16 + 32 + 56 = 28 + 112, and the proper divisors of 225 are {1, 3, 5, 9, 15, 25, 45, 75} and 1 + 3 + 15 + 25 + 45 = 5 + 9 + 75.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
hzQ[n_] := Module[{d = Most @ Divisors[n], sum, x}, sum = Plus @@ d; EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; hzq1 = False; s = {}; Do[hzq2 = hzQ[n]; If[hzq1 && hzq2, AppendTo[s, n - 1]]; hzq1 = hzq2, {n, 2, 6000}]; s
Comments