cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A246910 Numbers n such that sigma(n+sigma(n)) = 3*sigma(n).

Original entry on oeis.org

1, 7, 26, 30, 42, 54, 69, 78, 84, 94, 102, 103, 114, 138, 140, 174, 222, 258, 354, 364, 474, 476, 498, 520, 532, 534, 582, 618, 644, 650, 762, 764, 812, 834, 847, 894, 978, 1002, 1036, 1038, 1050, 1182, 1185, 1194, 1204, 1214, 1362, 1372, 1398, 1434, 1487
Offset: 1

Views

Author

Jaroslav Krizek, Sep 07 2014

Keywords

Comments

A246914 gives the primes in this sequence.

Examples

			Number 26 (with sigma(26) = 42) is in sequence because sigma(26+sigma(26)) = sigma(68) = 126 = 3*42.
		

Crossrefs

Programs

  • Magma
    [n:n in[1..10000] | SumOfDivisors(n+SumOfDivisors(n)) eq 3*SumOfDivisors(n)]
    
  • Maple
    with(numtheory): A246910:=n->`if`(sigma(n+sigma(n)) = 3*sigma(n),n,NULL): seq(A246910(n), n=1..5000); # Wesley Ivan Hurt, Sep 07 2014
  • PARI
    for(n=1,10^4,if(sigma(n+sigma(n))==3*sigma(n),print1(n,", "))) \\ Derek Orr, Sep 07 2014

A246912 Numbers n such that sigma(n+sigma(n)) = 5*sigma(n).

Original entry on oeis.org

15456, 16920, 48576, 59520, 107160, 153360, 232596, 281916, 306720, 332280, 332640, 358560, 360360, 373104, 383400, 514080, 548772, 556920, 788256, 876960, 884520, 930384, 943344, 950040, 955296, 1234464, 1357020, 1396440, 1421280, 1534080, 1539720, 1582866
Offset: 1

Views

Author

Jaroslav Krizek, Sep 07 2014

Keywords

Examples

			Number 15456 (with sigma(15456) = 48384) is in sequence because sigma(15456+sigma(15456)) = sigma(63840) = 241920 = 5*48384.
		

Crossrefs

Programs

  • Magma
    [n:n in[1..10^7] | SumOfDivisors(n+SumOfDivisors(n))eq 5*SumOfDivisors(n)]
    
  • Maple
    with(numtheory): A246912:=n->`if`(sigma(n+sigma(n)) = 5*sigma(n),n,NULL): seq(A246912(n), n=1..10^6); # Wesley Ivan Hurt, Sep 07 2014
  • Mathematica
    Select[Range[16*10^5],DivisorSigma[1,#+DivisorSigma[1,#]] == 5*DivisorSigma[ 1,#]&] (* Harvey P. Dale, Mar 13 2016 *)
  • PARI
    for(n=1,10^7,if(sigma(n+sigma(n))==5*sigma(n),print1(n,", "))) \\ Derek Orr, Sep 07 2014

A246913 Numbers n such that sigma(n+sigma(n)) = 6*sigma(n).

Original entry on oeis.org

831376, 3944688, 16956576, 17843616, 22591296, 25371360, 27870976, 51878736, 58877280, 64641984, 142990848, 164898720, 172821456, 181821024, 204330672, 276371200, 281613024, 301571424, 319848480, 326207700, 342237456, 346502520, 389165568, 389450880, 392110992
Offset: 1

Views

Author

Jaroslav Krizek, Sep 07 2014

Keywords

Comments

a(310) > 10^11. - Hiroaki Yamanouchi, Sep 11 2015

Examples

			Number 831376 (with sigma(831376) = 1985984) is in sequence because sigma(831376+sigma(831376)) = sigma(2817360) = 11915904 = 6*1985984.
		

Crossrefs

Programs

  • Magma
    [n:n in[1..10^7] | SumOfDivisors(n+SumOfDivisors(n))eq 6*SumOfDivisors(n)]
    
  • PARI
    for(n=1,10^7,if(sigma(n+sigma(n))==6*sigma(n),print1(n,", "))) \\ Derek Orr, Sep 07 2014

Extensions

a(5)-a(25) from Hiroaki Yamanouchi, Sep 11 2015

A246914 Primes p such that sigma(2p+1) = 3*(p+1).

Original entry on oeis.org

7, 103, 1487, 9679, 73727, 603679
Offset: 1

Views

Author

Jaroslav Krizek, Sep 07 2014

Keywords

Comments

Primes p such that sigma(p+sigma(p)) = 3*sigma(p). Subsequence of A246910.
The next term, if it exists, must be greater than 10^9.
Conjecture: Also primes p such that sigma(2p+1) mod p = 3. - Jaroslav Krizek, Sep 28 2014
No other terms up to 10^11. - Michel Marcus, Feb 21 2020

Examples

			Prime 7 is in sequence because sigma(2*7 + 1) = sigma(15) = 24 = 3*(7+1).
		

Crossrefs

Programs

  • Magma
    [n:n in[1..10^7] | SumOfDivisors(n+SumOfDivisors(n))eq 3*SumOfDivisors(n) and IsPrime(n)]
    
  • Maple
    with(numtheory): A246914:=n->`if`(isprime(n) and sigma(2*n+1) = 3*(n+1), n, NULL): seq(A246914(n), n=1..10^5); # Wesley Ivan Hurt, Oct 01 2014
  • Mathematica
    Select[Prime[Range[1500]], DivisorSigma[1, 2# + 1] == 3# + 3 &] (* Alonso del Arte, Sep 07 2014 *)
  • PARI
    for(n=1,10^6,p=prime(n);if(sigma(p+sigma(p))==3*sigma(p),print1(p,", "))) \\ Derek Orr, Sep 07 2014
    
  • PARI
    forprime(p=2,10^7,if(sigma(2*p+1)==3*(p+1),print1(p,","))) \\ Edward Jiang, Sep 07 2014

A246911 Numbers n such that sigma(n+sigma(n)) = 4*sigma(n).

Original entry on oeis.org

28, 66, 348, 496, 840, 920, 1320, 1416, 1602, 1770, 1896, 1920, 2040, 2280, 2556, 3000, 3360, 3720, 4440, 4920, 5456, 5640, 5826, 7080, 7392, 8010, 8040, 8128, 8298, 10528, 10680, 11424, 12768, 12840, 13080, 15108, 15504, 17880, 18120, 18720, 18840, 20832
Offset: 1

Views

Author

Jaroslav Krizek, Sep 07 2014

Keywords

Examples

			Number 28 (with sigma(28) = 56) is in sequence because sigma(26+sigma(26)) = sigma(84) = 224 = 4*56.
		

Crossrefs

Programs

  • Magma
    [n:n in[1..10000] | SumOfDivisors(n+SumOfDivisors(n)) eq 4*SumOfDivisors(n)]
    
  • Maple
    with(numtheory): A246911:=n->`if`(sigma(n+sigma(n)) = 4*sigma(n),n,NULL): seq(A246911(n), n=1..3*10^4); # Wesley Ivan Hurt, Sep 07 2014
  • PARI
    for(n=1,10^4,if(sigma(n+sigma(n))==4*sigma(n),print1(n,", "))) \\ Derek Orr, Sep 07 2014

A246857 Numbers k such that sigma(k + sigma(k)) = 2*sigma(k).

Original entry on oeis.org

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 329, 359, 413, 419, 431, 443, 491, 509, 593, 623, 641, 653, 659, 683, 719, 743, 761, 809, 869, 911, 953, 979, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1439, 1451
Offset: 1

Views

Author

Jaroslav Krizek, Sep 05 2014

Keywords

Comments

Union of A005384 (Sophie Germain primes) and A246858.
First composite number in sequence is 329 (see A246858).

Examples

			Composite number 329 (with sigma(329) = 384) is in sequence because sigma(329+sigma(329)) = sigma(713) = 768 = 2*384.
Prime 359 (with sigma(359) = 360) is in sequence because sigma(359+sigma(359)) = sigma(719) = 720 = 2*360.
		

Crossrefs

Programs

  • Magma
    [n:n in[1..10000] | SumOfDivisors(n+SumOfDivisors(n)) eq 2*SumOfDivisors(n)]
    
  • Mathematica
    Select[Range[1500], DivisorSigma[1, # + DivisorSigma[1, #]] == 2 DivisorSigma[1, #] &] (* Michael De Vlieger, Aug 05 2021 *)
  • PARI
    select(n -> sigma(n+sigma(n))==2*sigma(n),[1..1000]) \\ Edward Jiang, Sep 05 2014

A246858 Composite numbers k such that sigma(k + sigma(k)) = 2*sigma(k).

Original entry on oeis.org

329, 413, 623, 869, 979, 1819, 2585, 3107, 3173, 3197, 3887, 4235, 4997, 5771, 6149, 6187, 6443, 7409, 8399, 8759, 14429, 15323, 18515, 19019, 21181, 21413, 23989, 26491, 29749, 30355, 31043, 32623, 34009, 34177, 39737, 47321, 47845, 51389, 53311, 56419
Offset: 1

Views

Author

Jaroslav Krizek, Sep 05 2014

Keywords

Comments

Complement of A005384 (Sophie Germain primes) with respect to A246857.

Examples

			Number 329 (with sigma(329) = 384) is in sequence because sigma(329 + sigma(329)) = sigma(713) = 768 = 2*384.
		

Crossrefs

Programs

  • Magma
    [n:n in[1..1000] | SumOfDivisors(n+SumOfDivisors(n)) eq 2*SumOfDivisors(n) and not IsPrime(n)]
    
  • Mathematica
    Select[Range[57000], And[CompositeQ[#], DivisorSigma[1, # + DivisorSigma[1, #]] == 2 DivisorSigma[1, #]] &] (* Michael De Vlieger, Aug 05 2021 *)
  • PARI
    lista(nn) = {forcomposite(n=2, nn, if (sigma(n+sigma(n)) == 2*sigma(n), print1(n, ", ")););} \\ Michel Marcus, Sep 05 2014

A246908 a(n) = sigma(n + sigma(n)) - sigma(n).

Original entry on oeis.org

2, 3, 4, 5, 6, 27, 16, 9, 23, 38, 12, 62, 26, 36, 32, 17, 30, 41, 36, 54, 22, 54, 24, 164, 89, 84, 28, 168, 30, 144, 72, 57, 73, 126, 36, 37, 86, 111, 64, 162, 42, 192, 76, 171, 90, 108, 72, 184, 105, 75, 96, 274, 54, 240, 56, 252, 58, 176, 84, 392, 106, 144
Offset: 1

Views

Author

Jaroslav Krizek, Sep 07 2014

Keywords

Examples

			For n = 6; a(n) = sigma(6 + sigma(6)) - sigma(6) = sigma(18) - sigma(6) = 39 - 12 = 27.
		

Crossrefs

Programs

  • Magma
    [SumOfDivisors(n+SumOfDivisors(n))-SumOfDivisors(n):n in[1..1000]]
    
  • Mathematica
    sig[n_]:=Module[{d6=DivisorSigma[1,n]},DivisorSigma[1,n+d6]-d6]; Array[ sig,70] (* Harvey P. Dale, Feb 20 2015 *)
  • PARI
    vector(100,n,sigma(n+sigma(n))-sigma(n)) \\ Derek Orr, Sep 07 2014

Formula

a(n) = n + 1 for number in A078762 (numbers n such that n + sigma(n) is prime).

A246915 Numbers n such that sigma(n + sigma(n)) = sigma((n+1) + sigma(n+1)).

Original entry on oeis.org

4, 7, 16, 50, 494, 4485, 12585, 20606, 45590, 46761, 48614, 64785, 72609, 137853, 169898, 196934, 224186, 321986, 363037, 466545, 474573, 532441, 702374, 811004, 910125, 982310, 1141281, 1282436, 1288557, 1531245, 1602801, 1635854, 1695705, 1842405, 2246781, 2725802, 3018277, 3343515
Offset: 1

Views

Author

Jaroslav Krizek, Sep 07 2014

Keywords

Comments

Numbers n such that A246456(n) = A246456(n+1).
Conjecture: sequence of numbers A246456(a(n)): 12, 24, 48, 168, 2160, 17280, 54720, 77280, 221184, 202176, 185328, 249984, 312480, 599040, 725760, 967680, 864864, 1327104, 1489488, 2048256, 1958400, 2439360, 3110400, 3902976, 4852224, 4713984, … is sequence of any multiples of 12.

Examples

			Number 16 is in sequence because A246456(4) = A246456(5) = 12.
		

Crossrefs

Programs

  • Magma
    [n:n in[1..1000000] | SumOfDivisors(n+SumOfDivisors(n)) eq SumOfDivisors(n+1+SumOfDivisors(n+1))]
    
  • Mathematica
    SequencePosition[Table[DivisorSigma[1,n+DivisorSigma[1,n]],{n,3344000}],{x_,x_}][[All,1]] (* The program takes a long time to run. To generate fewer terms but more quickly, reduce the "n" constant. *) (* Harvey P. Dale, Mar 07 2022 *)
  • PARI
    for(n=1,10^7,if(sigma(n+sigma(n))==sigma(n+1+sigma(n+1)),print1(n,", "))) \\ Derek Orr, Sep 07 2014

Extensions

More terms from Derek Orr, Sep 07 2014

A383392 Numbers k such that (sigma(k) + sigma(k + sigma(k))) / k is an integer where sigma(k) = A000203(k) is the sum of the divisors of k.

Original entry on oeis.org

1, 3, 14, 19, 27, 28, 48, 139, 164, 243, 496, 1428, 1440, 3360, 3480, 5932, 8128, 11004, 19683, 25296, 27144, 31756, 35616, 45436, 47520, 51480, 84000, 115506, 218520, 221088, 288288, 290520, 303309, 414528, 445788, 605880, 1019070, 1122432, 2100000, 2136288
Offset: 1

Views

Author

Ctibor O. Zizka, Apr 25 2025

Keywords

Examples

			k = 3: (sigma(3) + sigma(3 + sigma(3)))/3 = (4 + 8)/3 = 4.
		

Crossrefs

Programs

  • Mathematica
    q[k_] := Module[{s = DivisorSigma[1, k]}, Divisible[s + DivisorSigma[1, k + s], k]]; Select[Range[2200000], q] (* Amiram Eldar, Apr 25 2025 *)
  • PARI
    isok(k) = my(s=sigma(k)); ((s+sigma(k+s)) % k) == 0; \\ Michel Marcus, Apr 25 2025
Showing 1-10 of 10 results.