A246519 Primes p such that 4+p, 4+p^2, 4+p^3 and 4+p^5 are all prime.
7, 5503, 21013, 301123, 303613, 420037, 469363, 679153, 771427, 991957, 999667, 1524763, 1707367, 2030653, 2333083, 2540563, 2552713, 2710933, 3009967, 3378103, 3441817, 3592213, 4419937, 4704613, 4840723, 5177797, 5691547, 6227587, 6275887, 6395677, 6595597, 6597163
Offset: 1
Keywords
Examples
From _K. D. Bajpai_, Jan 20 2015: (Start) a(2) = 5503: 4 + 5503 = 5507; 4 + 5503^2 = 30283013; 4 + 5503^3 = 166647398531; 4 + 5503^5 = 5046584669419727747; all five are prime. (End)
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Primes p such that 4+p^7, 4+p^9 and 4+p^11 are also prime is A253937. - K. D. Bajpai, Jan 20 2015
The subsequence with 4+p^7 also prime is A246562. - Danny Rorabaugh, Apr 19 2015
Programs
-
Magma
[p: p in PrimesUpTo(2*10^7) | IsPrime(4+p) and IsPrime(4+p^2) and IsPrime(4+p^3) and IsPrime(4+p^5)]; // Vincenzo Librandi, Apr 19 2015
-
Mathematica
k=4; Select[Prime[Range[1,500000]], PrimeQ[k+#]&&PrimeQ[k+#^2] &&PrimeQ[k+#^3] &&PrimeQ[k+#^5]&] (*K. D. Bajpai, Jan 20 2015 *)
-
PARI
for(n=1, 6000000, if(isprime(n) && isprime(4+n) && isprime(4+n^2) && isprime(4+n^3) && isprime(4+n^5), print1(n, ", "))) \\ Colin Barker, Aug 28 2014
-
PARI
p=7; forprime(q=11, 1e8, if(q-p==4 && isprime(4+p^2) && isprime(4+p^3) && isprime(4+p^5), print1(p, ", ")); p=q) \\ Charles R Greathouse IV, Aug 28 2014
-
Python
from sympy import prime, isprime A246519_list = [p for p in (prime(n) for n in range(1,10**5)) if all([isprime(4+p**z) for z in (1,2,3,5)])] # Chai Wah Wu, Sep 08 2014
Comments