cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A005532 Decimal expansion of fifth root of 3.

Original entry on oeis.org

1, 2, 4, 5, 7, 3, 0, 9, 3, 9, 6, 1, 5, 5, 1, 7, 3, 2, 5, 9, 6, 6, 6, 8, 0, 3, 3, 6, 6, 4, 0, 3, 0, 5, 0, 8, 0, 9, 3, 9, 3, 0, 9, 9, 9, 3, 0, 6, 8, 7, 7, 9, 8, 1, 1, 0, 4, 6, 1, 7, 3, 0, 1, 4, 3, 6, 0, 7, 4, 6, 6, 5, 3, 7, 7, 5, 4, 9, 3, 5, 6, 6, 6, 0, 5, 8, 9, 5, 1, 4, 4, 5, 8, 8, 1, 2, 3, 4, 2, 5, 6, 5, 9, 0, 2
Offset: 1

Views

Author

Keywords

Examples

			1.245730939615517325966680336640305080939309993068779811046173... - _Harry J. Smith_, May 12 2009
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003117 (continued fraction). - Harry J. Smith, May 12 2009
Cf. A246708.

Programs

  • Maple
    Digits := 200: it := evalf(3^(1/5)/10, 200)-floor(evalf(3^(1/5)/10, 200)): for i from 1 to 150 do printf(`%d,`,floor(10*it)): it := 10*it-floor(10*it): od:
  • Mathematica
    RealDigits[N[3^(1/5),200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2012 *)
    RealDigits[Surd[3,5],10,120][[1]] (* Harvey P. Dale, Dec 10 2024 *)
  • PARI
    { default(realprecision, 20080); x=3^(1/5); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b005532.txt", n, " ", d)); } \\ Harry J. Smith, May 12 2009

Extensions

More terms from James Sellers, Feb 19 2001

A246709 Decimal expansion of the seventh root of 3.

Original entry on oeis.org

1, 1, 6, 9, 9, 3, 0, 8, 1, 2, 7, 5, 8, 6, 8, 6, 8, 8, 6, 4, 6, 2, 9, 7, 5, 7, 2, 5, 5, 1, 3, 7, 3, 4, 6, 6, 7, 6, 9, 9, 4, 0, 4, 1, 9, 6, 4, 2, 0, 9, 3, 4, 2, 0, 9, 0, 3, 0, 2, 1, 8, 9, 6, 5, 5, 8, 9, 3, 3, 3, 9, 3, 6, 2, 7, 4, 0, 0, 3, 6, 7, 0, 1, 5, 1, 1, 4, 3, 0, 1, 9, 6, 9, 3, 9, 3, 5
Offset: 1

Views

Author

Alonso del Arte, Sep 01 2014

Keywords

Examples

			3^(1/7) = 1.1699308127586868864629757255137346676994...
		

Crossrefs

Cf. A246708 (sixth root of 3), A011267 (13th root of 9).
Cf. A010769.

Programs

  • Mathematica
    RealDigits[3^(1/7), 10, 108][[1]]
  • PARI
    sqrtn(3, 7) \\ Stefano Spezia, Apr 03 2025

A249099 Position of 3*n^6 in the ordered union of {h^6, h >=1} and {3*k^6, k >=1}.

Original entry on oeis.org

2, 4, 6, 8, 11, 13, 15, 17, 19, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 44, 46, 48, 50, 52, 55, 57, 59, 61, 63, 66, 68, 70, 72, 74, 77, 79, 81, 83, 85, 88, 90, 92, 94, 96, 99, 101, 103, 105, 107, 110, 112, 114, 116, 118, 121, 123, 125, 127, 129, 132, 134
Offset: 1

Views

Author

Clark Kimberling, Oct 21 2014

Keywords

Comments

Let S = {h^6, h >=1} and T = {3*k^6, k >=1}. Then S and T are disjoint, with ordered union given by A249097. The position of n^6 is A249098(n), and the position of 3*n^6 is a(n).
Also, a(n) is the position of n in the joint ranking of the positive integers and the numbers k*3^(1/6), so that A249098 and this sequence are a pair of Beatty sequences.

Examples

			{h^6, h >=1} = {1, 64, 729, 4096, 15625, 46656, 117649, ...};
{3*k^6, k >=1} = {3, 192, 2187, 12288, 46875, 139968, ...};
so the ordered union is {1, 3, 64, 192, 729, 2187, 4096, 12288, ...}, and
a(2) = 4 because 3*2^6 is in position 4.
		

Crossrefs

Programs

  • Mathematica
    z = 200; s = Table[h^6, {h, 1, z}]; t = Table[3*k^6, {k, 1, z}]; u = Union[s, t];
    v = Sort[u]  (* A249073 *)
    m = Min[120, Position[v, 2*z^2]]
    Flatten[Table[Flatten[Position[v, s[[n]]]], {n, 1, m}]]  (* A249098 *)
    Flatten[Table[Flatten[Position[v, t[[n]]]], {n, 1, m}]]  (* A249099 *)
  • PARI
    a(n) = sqrtnint(3*n^6,6) + n; \\ Kevin Ryde, Feb 18 2025

Formula

a(n) = floor((1+3^(1/6)) * n). - Kevin Ryde, Feb 18 2025

Extensions

Incorrect conjectured formulas removed by Kevin Ryde, Feb 18 2025

A382197 Decimal expansion of 24^(1/6).

Original entry on oeis.org

1, 6, 9, 8, 3, 8, 1, 3, 2, 9, 5, 6, 4, 9, 5, 2, 7, 8, 4, 9, 1, 2, 5, 6, 4, 5, 2, 4, 6, 5, 9, 7, 4, 9, 3, 6, 0, 2, 0, 3, 5, 0, 0, 0, 9, 0, 3, 3, 5, 9, 7, 1, 4, 4, 8, 9, 0, 4, 1, 0, 6, 1, 6, 1, 9, 6, 9, 5, 4, 9, 3, 2, 0, 1, 3, 8, 0, 8, 9, 0, 0, 9, 2, 7, 8, 1, 3, 6, 7, 0, 0, 3, 4, 1, 9, 8, 8, 0, 2, 1
Offset: 1

Views

Author

Stefano Spezia, Mar 18 2025

Keywords

Examples

			1.69838132956495278491256452465974936020350009...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[24^(1/6),10,100][[1]]

Formula

Showing 1-4 of 4 results.