cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A340149 Odd part of A340147: a(n) = A000265(A247074(A003961(n))).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 9, 5, 3, 1, 3, 1, 5, 3, 27, 1, 5, 1, 9, 5, 3, 1, 9, 7, 1, 25, 15, 1, 3, 1, 81, 3, 9, 15, 15, 1, 11, 1, 27, 1, 5, 1, 9, 5, 7, 1, 27, 11, 21, 9, 3, 1, 25, 1, 45, 11, 15, 1, 9, 1, 9, 25, 243, 3, 3, 1, 27, 7, 3, 1, 45, 1, 5, 21, 33, 15, 1, 1, 81, 125, 21, 1, 15, 3, 23, 15, 27, 1, 15, 5, 21, 9, 13, 33
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2020

Keywords

Comments

Each term a(n) is a divisor of A340075(n), at n=85 occurs the first proper divisor.

Crossrefs

Cf. A000265, A003961, A247074, A340147, A340150 (positions of ones).
Differs from related A340075 for the first time at n=85, where a(85) = 3, while A340075(85) = 9.

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A247074(n) = { my(f=factor(n)); eulerphi(f)/prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); }; \\ From A247074
    A340149(n) = A000265(A247074(A003961(n)));

Formula

A340145 Dirichlet inverse of A247074(x) = phi(x)/(Product_{primes p dividing x} gcd(p-1, x-1)).

Original entry on oeis.org

1, -1, -1, -1, -1, 0, -1, -1, -2, -2, -1, 1, -1, -4, 0, -1, -1, 1, -1, 1, -1, -8, -1, 2, -4, -10, -4, 9, -1, 2, -1, -1, -3, -14, -4, 3, -1, -16, -4, 4, -1, 4, -1, 1, 4, -20, -1, 3, -6, -5, -6, 17, -1, 4, -8, -10, -7, -26, -1, 6, -1, -28, 0, -1, -1, 24, -1, 1, -9, 18, -1, 4, -1, -34, 1, 25, -13, 10, -1, 7, -8, -38, -1
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Crossrefs

Cf. A247074.
Cf. also A340142, A340144, A340146.

Programs

  • PARI
    up_to = 65537;
    A247074(n) = { my(f=factor(n)); eulerphi(f)/prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); }; \\ From A247074
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA247074(n)));
    A340145(n) = v340145[n];

A340146 Möbius transform of A247074(x) = phi(x)/(Product_{primes p dividing x} gcd(p-1, x-1)).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 2, 2, 3, 0, 1, 0, 5, 1, 4, 0, 2, 0, 3, 2, 9, 0, 2, 4, 11, 6, -3, 0, 2, 0, 8, 4, 15, 5, 4, 0, 17, 5, 6, 0, 3, 0, 9, -1, 21, 0, 4, 6, 12, 7, -5, 0, 6, 9, 18, 8, 27, 0, 3, 0, 29, 4, 16, 2, -11, 0, 15, 10, -6, 0, 8, 0, 35, 4, -7, 14, 6, 0, 12, 18, 39, 0, 13, 3, 41, 13, 18, 0, 13, 1, 21, 14, 45, 17, 8
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Crossrefs

Programs

  • PARI
    A247074(n) = { my(f=factor(n)); eulerphi(f)/prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); }; \\ From A247074
    A340146(n) = sumdiv(n,d,moebius(n/d)*A247074(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A247074(d).

A340144 Numerators of the sequence whose Dirichlet convolution with itself yields sequence A247074(x) = phi(x)/(Product_{primes p dividing x} gcd(p-1, x-1)).

Original entry on oeis.org

1, 1, 1, 7, 1, 3, 1, 25, 11, 7, 1, 19, 1, 11, 3, 363, 1, 31, 1, 43, 5, 19, 1, 63, 19, 23, 61, 3, 1, 19, 1, 1335, 9, 31, 11, 189, 1, 35, 11, 139, 1, 29, 1, 115, 7, 43, 1, 867, 27, 127, 15, 11, 1, 163, 19, 279, 17, 55, 1, 93, 1, 59, 51, 9923, 5, -15, 1, 187, 21, 3, 1, 615, 1, 71, 55, 19, 29, 59, 1, 1875, 1363, 79, 1, 203
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Examples

			For n = 561 = 3*11*17, its divisors d are: 1, 3, 11, 17, 33, 51, 187, 561.
For this sequence, the corresponding terms a(d) are: 1, 1, 1, 1, 9, 15, 79, -99.
For A046644, the corresponding terms are:            1, 2, 2, 2, 4,  4,  4,   8.
Convolving these ratios as Sum_{d|561} r(d)*r(n/d) = 2*((1/1)*(-99/8) + (1/2)*(79/4) + (1/2)*(15/4) + (1/2)*(9/4)) yields 1 as expected, because 561 is Carmichael number (A002997) and A247074 obtains value 1 on all of them.
		

Crossrefs

Cf. A046644 (denominators).
Cf. A247074.
Cf. also A340141, A340145, A340146.

Programs

  • PARI
    up_to = 65537;
    A247074(n) = { my(f=factor(n)); eulerphi(f)/prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); }; \\ From A247074
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA247074(n)));
    A340144(n) = numerator(v340144rat[n]);

A340147 a(n) = A247074(A003961(n)).

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 9, 5, 3, 1, 3, 1, 5, 6, 27, 1, 10, 1, 9, 10, 6, 1, 18, 7, 8, 25, 15, 1, 3, 1, 81, 3, 9, 15, 15, 1, 11, 4, 27, 1, 5, 1, 9, 10, 14, 1, 27, 11, 21, 18, 6, 1, 50, 2, 45, 22, 15, 1, 18, 1, 18, 50, 243, 24, 12, 1, 27, 7, 3, 1, 90, 1, 20, 21, 33, 30, 16, 1, 81, 125, 21, 1, 30, 3, 23, 30, 54, 1, 15, 40, 21
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2020

Keywords

Comments

Prime shifted analog of A247074.
Each term a(n) is a divisor of A340072(n).

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A247074(n) = { my(f=factor(n)); eulerphi(f)/prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); }; \\ From A247074
    A340147(n) = A247074(A003961(n));

Formula

a(n) = A247074(A003961(n)).
a(n) = A003972(n) / A340148(n).

A160595 Numerator of resilience R(n) = phi(n)/(n-1), with a(1) = 1 by convention.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 3, 4, 1, 4, 1, 6, 4, 8, 1, 6, 1, 8, 3, 10, 1, 8, 5, 12, 9, 4, 1, 8, 1, 16, 5, 16, 12, 12, 1, 18, 12, 16, 1, 12, 1, 20, 6, 22, 1, 16, 7, 20, 16, 8, 1, 18, 20, 24, 9, 28, 1, 16, 1, 30, 18, 32, 3, 4, 1, 32, 11, 8, 1, 24, 1, 36, 20, 12, 15, 24, 1, 32, 27, 40, 1, 24, 16, 42, 28
Offset: 1

Views

Author

M. F. Hasler, May 23 2009

Keywords

Comments

The resilience of a denominator, R(d), is the ratio of proper fractions n/d, 0 < n < d, that are resilient, i.e., such that gcd(n, d) = 1. Obviously this is the case for phi(d) proper fractions among the d - 1 possible ones.
a(n) = 1 if n is prime. It is unknown whether there exist composite n with a(n) = 1 (see Wikipedia link). - Robert Israel, Dec 26 2016
Conjecture: a(n) > 2 for every composite n > 6. Slightly stronger than the Lehmer's totient conjecture (1932). - Thomas Ordowski, Mar 13 2019

Examples

			a(9) = 3 since for the denominator d = 9, among the 8 proper fractions n/9 (n = 1, ..., 8), six cannot be canceled down by a common factor (namely 1/9, 2/9, 4/9, 5/9, 7/9, 8/9), thus R(9) = 6/8 = 3/4.
		

Crossrefs

Programs

  • Magma
    [Numerator(EulerPhi(n)/(n-1)): n in [2..90]]; // Vincenzo Librandi, Jan 02 2017
  • Maple
    seq(numer(numtheory:-phi(n)/(n-1)),n=2..100); # Robert Israel, Dec 26 2016
  • Mathematica
    Numerator[Table[EulerPhi[n]/(n - 1), {n, 2, 87}]] (* Alonso del Arte, Sep 19 2011 *)
  • PARI
    A160595(n) = if(1==n,n,numerator(eulerphi(n)/(n-1)));
    

Formula

a(n) = phi(n)/gcd(phi(n),n-1) = A000010(n) / A049559(n) = A247074(n) * A318829(n). - Antti Karttunen, Sep 09 2018

Extensions

Term a(1) = 1 prepended by Antti Karttunen, Sep 09 2018

A323405 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A003557(n), A023900(n), A063994(n)] for all other numbers, except f(n) = 0 for odd primes.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 26, 29, 3, 30, 3, 31, 32, 33, 3, 34, 35, 36, 37, 38, 3, 39, 40, 41, 42, 43, 3, 44, 3, 45, 46, 47, 48, 49, 3, 50, 51, 52, 3, 53, 3, 54, 55, 56, 57, 58, 3, 59, 60, 61, 3, 62, 63, 64, 65, 66, 3, 67, 68, 69, 57, 70, 71, 72, 3, 73, 74, 75, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Comments

For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A323371(i) = A323371(j),
a(i) = a(j) => A247074(i) = A247074(j).

Crossrefs

Differs from A323370 for the first time at n=78, where a(78) = 58, while A323370(78) = 52.
Cf. also A323374.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A023900(n) = sumdivmult(n, d, d*moebius(d)); \\ From A023900
    A063994(n) = { my(f=factor(n)[, 1]); prod(i=1, #f, gcd(f[i]-1, n-1)); }; \\ From A063994
    Aux323405(n) = if((n>2)&&isprime(n),0,[A003557(n), A023900(n), A063994(n)]);
    v323405 = rgs_transform(vector(up_to, n, Aux323405(n)));
    A323405(n) = v323405[n];

A318829 a(n) = A063994(n) / A049559(n) = (1/gcd(n-1, phi(n))) * Product_{primes p dividing n} gcd(p-1, n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 09 2018

Keywords

Comments

Records occur at: 1, 15, 85, 247, 671, 949, 1105, 1387, 2047, 2821, 9471, 11305, 13747, 13981, 29341, 40885, 51319, 63973, ...

Crossrefs

Programs

Formula

a(n) = A063994(n) / A049559(n).
a(n) = A160595(n) / A247074(n).

A323404 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A003557(n), A023900(n), A063994(n)].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 35, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 76, 92
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Comments

For all i, j: a(i) = a(j) => A247074(i) = A247074(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A023900(n) = sumdivmult(n, d, d*moebius(d)); \\ From A023900
    A063994(n) = { my(f=factor(n)[, 1]); prod(i=1, #f, gcd(f[i]-1, n-1)); }; \\ From A063994
    Aux323404(n) = if(1,[A003557(n), A023900(n), A063994(n)]);
    v323404 = rgs_transform(vector(up_to, n, Aux323404(n)));
    A323404(n) = v323404[n];

A340091 Odd numbers k such that A064989(k) is in A340151.

Original entry on oeis.org

679, 703, 1387, 1729, 1891, 2047, 2509, 2701, 2821, 3277, 3367, 5551, 7471, 7735, 8119, 8827, 9997, 10963, 11305, 12403, 13021, 13747, 13981, 14491, 14701, 15841, 16471, 17563, 19951, 21349, 21907, 21931, 22015, 23959, 24727, 25669, 26281, 27511, 28939, 29341, 31417, 32407, 38503, 39091, 39831, 39865, 40501, 41041
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Comments

Sequence A003961(A340151(i)), for i >= 1, sorted into ascending order.
By definition, this has no common terms with A340077 nor any of its subsequences like A339869 or A339880.

Crossrefs

Cf. A340092 (Carmichael numbers in this sequence).

Programs

Showing 1-10 of 10 results.