cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A340142 Dirichlet inverse of A160595, where A160595(x) = phi(x)/gcd(phi(x), x-1).

Original entry on oeis.org

1, -1, -1, -1, -1, 0, -1, -1, -2, -2, -1, 1, -1, -4, -2, -1, -1, 1, -1, 1, -1, -8, -1, 2, -4, -10, -4, 9, -1, 6, -1, -1, -3, -14, -10, 3, -1, -16, -10, 4, -1, 4, -1, 1, 5, -20, -1, 3, -6, -5, -14, 17, -1, 4, -18, -10, -7, -26, -1, 8, -1, -28, -9, -1, -1, 24, -1, 1, -9, 30, -1, 4, -1, -34, -5, 25, -13, 22, -1, 7, -8, -38, -1, -5
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Crossrefs

Cf. A160595.
Cf. also A340141, A340143.

Programs

  • PARI
    up_to = 65537;
    A160595(n) = { my(x=eulerphi(n)); x/gcd(x,n-1); };
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA160595(n)));
    A340142(n) = v340142[n];

A340143 Möbius transform of A160595, where A160595(x) = phi(x)/gcd(phi(x), x-1).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 2, 2, 3, 0, 1, 0, 5, 3, 4, 0, 2, 0, 3, 2, 9, 0, 2, 4, 11, 6, -3, 0, 0, 0, 8, 4, 15, 11, 4, 0, 17, 11, 6, 0, 3, 0, 9, 0, 21, 0, 4, 6, 12, 15, -5, 0, 6, 19, 18, 8, 27, 0, 3, 0, 29, 13, 16, 2, -11, 0, 15, 10, -12, 0, 8, 0, 35, 12, -7, 14, 0, 0, 12, 18, 39, 0, 13, 15, 41, 27, 18, 0, 12, 3, 21, 14, 45, 35
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Crossrefs

Cf. also A340141, A340142.

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[n/#1]*#2/GCD[#2, #3] & @@ {#, EulerPhi[#], # - 1} &], {n, 95}] (* Michael De Vlieger, Dec 29 2020 *)
  • PARI
    A160595(n) = { my(x=eulerphi(n)); x/gcd(x,n-1); };
    A340143(n) = sumdiv(n,d,moebius(n/d)*A160595(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A160595(d).

A323373 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => A049559(i) = A049559(j) and A160595(i) = A160595(j).

Original entry on oeis.org

1, 1, 2, 3, 4, 3, 5, 6, 7, 6, 8, 6, 9, 10, 11, 12, 13, 10, 14, 12, 15, 16, 17, 12, 18, 19, 20, 21, 22, 12, 23, 24, 18, 24, 25, 19, 26, 27, 25, 24, 28, 19, 29, 30, 31, 32, 33, 24, 34, 30, 35, 36, 37, 27, 38, 39, 40, 41, 42, 24, 43, 44, 45, 46, 47, 48, 49, 46, 50, 36, 51, 39, 52, 53, 38, 54, 55, 39, 56, 46, 57, 58, 59, 39, 60, 61, 62, 58, 63, 39, 64, 65, 55, 66, 67, 46, 68, 61, 69, 58, 70, 46
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Comments

Restricted growth sequence transform of [A049559(n), A160595(n)].
For all i, j: a(i) = a(j) => A000010(i) = A000010(j).
For all i, j > 1:
a(i) = a(j) => A323374(i) = A323374(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A049559(n) = gcd(eulerphi(n), n-1);
    A160595(n) = if(1==n, n, numerator(eulerphi(n)/(n-1)));
    v323373 = rgs_transform(vector(up_to, n, [A049559(n), A160595(n)]));
    A323373(n) = v323373[n];

A340141 Numerators of the sequence whose Dirichlet convolution with itself yields sequence A160595(x) = phi(x)/gcd(phi(x), x-1).

Original entry on oeis.org

1, 1, 1, 7, 1, 3, 1, 25, 11, 7, 1, 19, 1, 11, 7, 363, 1, 31, 1, 43, 5, 19, 1, 63, 19, 23, 61, 3, 1, 15, 1, 1335, 9, 31, 23, 189, 1, 35, 23, 139, 1, 29, 1, 115, 23, 43, 1, 867, 27, 127, 31, 11, 1, 163, 39, 279, 17, 55, 1, 73, 1, 59, 123, 9923, 5, -15, 1, 187, 21, -9, 1, 615, 1, 71, 127, 19, 29, 47, 1, 1875, 1363, 79, 1, 203, 31
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Crossrefs

Cf. A046644 (denominators).
Cf. A160595.
Cf. also A340142, A340143.

Programs

  • PARI
    up_to = 65537;
    A160595(n) = { my(x=eulerphi(n)); x/gcd(x,n-1); };
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA160595(n)));
    A340141(n) = numerator(v340141rat[n]);

A049559 a(n) = gcd(n - 1, phi(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 1, 2, 1, 16, 1, 18, 1, 4, 1, 22, 1, 4, 1, 2, 3, 28, 1, 30, 1, 4, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 4, 1, 46, 1, 6, 1, 2, 3, 52, 1, 2, 1, 4, 1, 58, 1, 60, 1, 2, 1, 16, 5, 66, 1, 4, 3, 70, 1, 72, 1, 2, 3, 4, 1, 78, 1, 2, 1, 82, 1, 4, 1, 2, 1, 88, 1, 18, 1, 4
Offset: 1

Views

Author

Labos Elemer, Dec 28 2000

Keywords

Comments

For prime n, a(n) = n - 1. Question: do nonprimes exist with this property?
Answer: No. If n is composite then a(n) < n - 1. - Charles R Greathouse IV, Dec 09 2013
Lehmer's totient problem (1932): are there composite numbers n such that a(n) = phi(n)? - Thomas Ordowski, Nov 08 2015
a(n) = 1 for n in A209211. - Robert Israel, Nov 09 2015

Examples

			a(9) = 2 because phi(9) = 6 and gcd(8, 6) = 2.
a(10) = 1 because phi(10) = 4 and gcd(9, 4) = 1.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, B37.

Crossrefs

Programs

  • Magma
    [Gcd(n-1, EulerPhi(n)): n in [1..80]]; // Vincenzo Librandi, Oct 13 2018
  • Maple
    seq(igcd(n-1, numtheory:-phi(n)), n=1..100); # Robert Israel, Nov 09 2015
  • Mathematica
    Table[GCD[n - 1, EulerPhi[n]], {n, 93}] (* Michael De Vlieger, Nov 09 2015 *)
  • PARI
    a(n)=gcd(eulerphi(n),n-1) \\ Charles R Greathouse IV, Dec 09 2013
    
  • Python
    from sympy import totient, gcd
    print([gcd(totient(n), n - 1) for n in range(1, 101)]) # Indranil Ghosh, Mar 27 2017
    

Formula

a(p^m) = a(p) = p - 1 for prime p and m > 0. - Thomas Ordowski, Dec 10 2013
From Antti Karttunen, Sep 09 2018: (Start)
a(n) = A000010(n) / A160595(n) = A063994(n) / A318829(n).
a(n) = n - A318827(n) = A000010(n) - A318830(n).
(End)
a(n) = gcd(A000010(n), A219428(n)) = gcd(A000010(n), A318830(n)). - Antti Karttunen, Jan 05 2021

A339901 a(n) = A339971(n) / gcd(A339809(2*n), A339971(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 3, 1, 5, 5, 5, 15, 3, 5, 15, 1, 3, 3, 3, 1, 9, 9, 9, 15, 15, 5, 15, 9, 45, 5, 45, 1, 1, 1, 1, 3, 3, 1, 3, 5, 1, 5, 5, 5, 15, 15, 15, 3, 3, 1, 3, 9, 9, 3, 9, 1, 15, 15, 15, 15, 9, 45, 45, 1, 9, 9, 9, 9, 27, 27, 27, 45, 45, 5, 45, 135, 135, 45, 135, 9, 27, 27, 27, 3, 81, 81, 81, 135, 27, 45, 135, 405
Offset: 0

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Compare also to the scatter plot of A339898.

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339901(n) = { my(x=A019565(2*n), y=A000265(eulerphi(x))); y/gcd((x-1),y); };

Formula

a(n) = A339971(n) / A339899(n).
a(n) = A000265(A160595(A019565(2*n))).
a(n) = A340075(A019565(n)) = A340085(A019565(2*n)).

A340072 a(n) = phi(x) / gcd(x-1, phi(x)), where x = A003961(n), i.e., n with its prime factorization shifted one step towards larger primes.

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 9, 5, 3, 1, 6, 1, 5, 12, 27, 1, 20, 1, 18, 20, 12, 1, 36, 7, 16, 25, 30, 1, 6, 1, 81, 3, 9, 15, 15, 1, 11, 16, 27, 1, 20, 1, 18, 20, 28, 1, 54, 11, 42, 36, 12, 1, 100, 4, 45, 44, 15, 1, 72, 1, 36, 100, 243, 48, 48, 1, 54, 7, 12, 1, 180, 1, 40, 42, 66, 60, 64, 1, 162, 125, 21, 1, 120, 9, 23, 60, 108
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Prime shifted analog of A160595.

Crossrefs

Cf. A000010, A003961, A003972, A160595, A253885, A340071, A340073, A340075 (gives the odd part).
Cf. also A340082.

Programs

  • Maple
    f:= proc(n) local F,x,p,t;
      F:= ifactors(n)[2];
      x:= mul(nextprime(t[1])^t[2],t=F);
      p:= numtheory:-phi(x);
      p/igcd(x-1,p)
    end proc:
    map(f,[$1..100]); # Robert Israel, Dec 28 2020
  • Mathematica
    a[n_] := Module[{x, p, e, phi}, x = Product[{p, e} = pe; NextPrime[p]^e, {pe, FactorInteger[n]}]; phi = EulerPhi[x]; phi/GCD[x-1, phi]];
    Array[a, 100] (* Jean-François Alcover, Jan 04 2022 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A340072(n) = { my(x=A003961(n), u=eulerphi(x)); u/gcd(x-1, u); };

Formula

a(n) = A160595(A003961(n)).
a(n) = A003972(n) / A340071(n).

A340082 a(n) = A003958(n) / gcd(n-1, A003958(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 6, 4, 1, 1, 4, 1, 4, 3, 10, 1, 2, 2, 12, 4, 2, 1, 8, 1, 1, 5, 16, 12, 4, 1, 18, 12, 4, 1, 12, 1, 10, 4, 22, 1, 2, 3, 16, 16, 4, 1, 8, 20, 6, 9, 28, 1, 8, 1, 30, 12, 1, 3, 4, 1, 16, 11, 8, 1, 4, 1, 36, 16, 6, 15, 24, 1, 4, 1, 40, 1, 12, 16, 42, 28, 10, 1, 16, 4, 22, 15, 46, 36, 2, 1, 36
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Cf. A003958, A340081, A340083, A340085 (gives the odd part).
Cf. also A160595, A340072.

Programs

  • PARI
    A003958(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1]--); factorback(f));
    A340082(n) = { my(u=A003958(n)); u/gcd(n-1, u); };

Formula

a(n) = A003958(n) / A340081(n) = A003958(n) / gcd(n-1, A003958(n)).

A340085 a(n) = A336466(n) / gcd(n-1, A336466(n)); Odd part of A340082(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 1, 9, 3, 1, 1, 3, 1, 5, 1, 11, 1, 1, 3, 1, 1, 1, 1, 1, 5, 3, 9, 7, 1, 1, 1, 15, 3, 1, 3, 1, 1, 1, 11, 1, 1, 1, 1, 9, 1, 3, 15, 3, 1, 1, 1, 5, 1, 3, 1, 21, 7, 5, 1, 1, 1, 11, 15, 23, 9, 1, 1, 9, 5, 1, 1, 1, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Array[#2/GCD[#1 - 1, #2] & @@ {#, Times @@ Map[If[# <= 2, 1, (# - 1)/2^IntegerExponent[# - 1, 2]] &, Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]]]} &, 105] (* Michael De Vlieger, Dec 29 2020 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A336466(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]-1))^f[k,2])); };
    A340085(n) = { my(u=A336466(n)); u/gcd(n-1, u); };

Formula

a(n) = A000265(A340082(n)).
a(n) = A336466(n) / A340084(n) = A336466(n) / gcd(n-1, A336466(n)).
For all n >= 0, a(A003961(A019565(n))) = a(A019565(2*n)) = A339901(n).

A318829 a(n) = A063994(n) / A049559(n) = (1/gcd(n-1, phi(n))) * Product_{primes p dividing n} gcd(p-1, n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 09 2018

Keywords

Comments

Records occur at: 1, 15, 85, 247, 671, 949, 1105, 1387, 2047, 2821, 9471, 11305, 13747, 13981, 29341, 40885, 51319, 63973, ...

Crossrefs

Programs

Formula

a(n) = A063994(n) / A049559(n).
a(n) = A160595(n) / A247074(n).
Showing 1-10 of 20 results. Next