cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000383 Hexanacci numbers with a(0) = ... = a(5) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 6, 11, 21, 41, 81, 161, 321, 636, 1261, 2501, 4961, 9841, 19521, 38721, 76806, 152351, 302201, 599441, 1189041, 2358561, 4678401, 9279996, 18407641, 36513081, 72426721, 143664401, 284970241, 565262081, 1121244166, 2224080691, 4411648301
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A060455.
Cf. A001592 (Hexanacci numbers with a(0) = ... = a(4) = 0 and a(5)=1).
Cf. A247192 (indices of primes in this sequence).
Cf. A249413 (primes in this sequence).

Programs

  • Maple
    A000383:=(-1+z**2+2*z**3+3*z**4+4*z**5)/(-1+z**2+z**3+z**4+z**5+z+z**6); # Simon Plouffe in his 1992 dissertation
    a:= n-> (Matrix([[1$6]]). Matrix(6, (i,j)-> if (i=j-1) or j=1 then 1 else 0 fi)^n)[1,6]: seq(a(n), n=0..28); # Alois P. Heinz, Aug 26 2008
  • Mathematica
    LinearRecurrence[{1,1,1,1,1,1},{1,1,1,1,1,1},50] (* Harvey P. Dale, Oct 30 2013 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; 1,1,1,1,1,1]^n*[1;1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Sep 24 2015

Formula

G.f. ( -1+x^2+2*x^3+3*x^4+4*x^5 ) / ( -1+x+x^2+x^3+x^4+x^5+x^6 ). - R. J. Mathar, Oct 11 2011

A249413 Primes in the hexanacci numbers sequence A000383.

Original entry on oeis.org

11, 41, 72426721, 143664401, 565262081, 4160105226881, 253399862985121, 997027328131841, 212479323351825962211841, 188939838859312612896128881921, 22828424707602602744356458636161, 661045104283639247572028952777478721
Offset: 1

Views

Author

Robert Price, Dec 03 2014

Keywords

Comments

a(13) is too large to display here. It has 62 digits and is the 210th term in A000383.

Crossrefs

Programs

  • Mathematica
    a={1,1,1,1,1,1}; For[n=6, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[5]]=sum]

A253333 Primes in the 7th-order Fibonacci numbers A060455.

Original entry on oeis.org

7, 13, 97, 193, 769, 1531, 3049, 6073, 12097, 24097, 95617, 379399, 2998753, 187339729, 373174033, 2949551617, 184265983633, 731152932481, 88025699967469825543, 175344042716296888429, 4979552865927484193343796114081304399449
Offset: 1

Views

Author

Robert Price, Dec 30 2014

Keywords

Comments

a(22) is too large to display here. It has 53 digits and is the 180th term in A060455.

Crossrefs

Programs

  • Mathematica
    a={1,1,1,1,1,1,1}; step=7; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[7]]=sum]; lst
    With[{c=PadRight[{},7,1]},Select[LinearRecurrence[c,c,150],PrimeQ]] (* Harvey P. Dale, May 08 2015 *)
  • PARI
    lista(nn) = {gf = ( -1+x^2+2*x^3+3*x^4+4*x^5+5*x^6 ) / ( -1+x+x^2+x^3+x^4+x^5+x^6+x^7 ); for (n=0, nn, if (isprime(p=polcoeff(gf+O(x^(n+1)), n)), print1(p, ", ")););} \\ Michel Marcus, Jan 11 2015

A254413 Primes in the 8th-order Fibonacci numbers A123526.

Original entry on oeis.org

29, 113, 449, 226241, 14307889, 113783041, 1820091580429249, 233322881089059894782836851617, 29566627412209231076314948970028097, 59243719929958343565697204780596496129, 7507351981539044730893385057192143660843521
Offset: 1

Views

Author

Robert Price, Jan 30 2015

Keywords

Comments

a(12) is too large to display here. It has 46 digits and is the 158th term in A123526.

Crossrefs

Programs

  • Mathematica
    a={1,1,1,1,1,1,1,1}; step=8; lst={}; For[n=step+1,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
    Select[With[{lr=PadRight[{},8,1]},LinearRecurrence[lr,lr,200]],PrimeQ] (* Harvey P. Dale, Dec 03 2022 *)

A253706 Primes in the 8th-order Fibonacci numbers A079262.

Original entry on oeis.org

2, 509, 128257, 133294824621464999938178340471931877, 4596852049500861351052672455121859744010232939954169259264638023409631672658340253083284317818242062413
Offset: 1

Views

Author

Robert Price, Jan 09 2015

Keywords

Comments

a(6) is too large to display here. It has 395 digits and is the 1322nd term in A079262.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,0,0,0,1}; step=8; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
  • PARI
    lista(nn) = {gf = x^7/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8); for (n=0, nn, if (isprime(p=polcoeff(gf+O(x^(n+1)), n)), print1(p, ", ")););} \\ Michel Marcus, Jan 12 2015
Showing 1-5 of 5 results.