A247165
Numbers m such that m^2 + 1 divides 2^m - 1.
Original entry on oeis.org
0, 16, 256, 8208, 65536, 649800, 1382400, 4294967296
Offset: 1
0 is in this sequence because 0^2 + 1 = 1 divides 2^0 - 1 = 1.
Cf.
A247219 (n^2 - 1 divides 2^n - 1),
A247220 (n^2 + 1 divides 2^n + 1).
-
[n: n in [1..100000] | Denominator((2^n-1)/(n^2+1)) eq 1];
-
select(n -> (2 &^ n - 1) mod (n^2 + 1) = 0, [$1..10^6]); # Robert Israel, Dec 02 2014
-
a247165[n_Integer] := Select[Range[0, n], Divisible[2^# - 1, #^2 + 1] &]; a247165[1500000] (* Michael De Vlieger, Nov 30 2014 *)
-
for(n=0,10^9,if(Mod(2,n^2+1)^n==+1,print1(n,", "))); \\ Joerg Arndt, Nov 30 2014
-
A247165_list = [n for n in range(10**6) if n == 0 or pow(2,n,n*n+1) == 1]
# Chai Wah Wu, Dec 04 2014
A247221
Numbers k such that 2*k^2 + 1 divides 2^k + 1.
Original entry on oeis.org
0, 1, 67653, 2124804
Offset: 1
-
[n: n in [1..300000] | Denominator((2^n+1)/(2*n^2+1)) eq 1];
-
a247221[n_Integer] := Select[Range[n], Divisible[2^# + 1, 2*#^2 + 1] &]; a247221[2500000] (* Michael De Vlieger, Nov 30 2014 *)
-
for(n=0,10^9,if(Mod(2,2*n^2+1)^n==-1,print1(n,", "))); \\ Joerg Arndt, Nov 30 2014
-
A247221_list = [n for n in range(10**6) if pow(2,n,2*n*n+1) == 2*n*n]
# Chai Wah Wu, Dec 07 2014
A273870
Numbers m such that 4^(m-1) == 1 (mod (m-1)^2 + 1).
Original entry on oeis.org
1, 3, 5, 17, 217, 257, 387, 8209, 20137, 37025, 59141, 65537, 283801, 649801, 1382401, 373164545, 535019101, 2453039425, 4294967297
Offset: 1
5 is a term because 4^(5-1) == 1 (mod (5-1)^2+1), i.e., 255 == 0 (mod 17).
Contains
A000215 (Fermat numbers) as subsequence.
Contains 1 +
A247220 as subsequence.
-
[n: n in [1..100000] | (4^(n-1)-1) mod ((n-1)^2+1) eq 0];
-
isok(n) = Mod(4, (n-1)^2+1)^(n-1) == 1; \\ Michel Marcus, Jun 02 2016
A319216
Numbers k such that k^2 + 1 divides 2^k + 2.
Original entry on oeis.org
0, 1, 3, 15, 79, 511, 4095, 6735, 65535, 2097151, 16777215, 75955411, 68719476735, 137438953471
Offset: 1
A319233
Numbers k such that k^2 + 1 divides 2^k + 4.
Original entry on oeis.org
0, 1, 8, 28, 32, 128, 2048, 8192, 23948, 131072, 524288, 8388608, 536870912, 2147483648, 137438953472
Offset: 1
32 = 2^5 is a term since (2^(2^5) + 2^2)/((2^5)^2 + 1) = 2^22 - 2^12 + 2^2.
A319245
Numbers k such that k^2 + 1 divides 2^k + 8.
Original entry on oeis.org
0, 1, 17, 37, 77, 197, 513, 993, 1837, 2617, 2637, 4097, 5437, 65537, 261633, 364137, 437837, 2097153, 16777217, 32761917, 54644032237, 68719476737, 137438953473, 1099511627777
Offset: 1
-
Select[Range[0, 9999], Divisible[2^# + 8, #^2 + 1] &] (* Alonso del Arte, Sep 16 2018 *)
-
isok(n)=Mod(2, n^2+1)^n==-8;
Showing 1-6 of 6 results.
Comments