A247563 a(n) = 3*a(n-1) - 4*a(n-2) with a(0) = 2, a(1) = 3.
2, 3, 1, -9, -31, -57, -47, 87, 449, 999, 1201, -393, -5983, -16377, -25199, -10089, 70529, 251943, 473713, 413367, -654751, -3617721, -8234159, -10231593, 2241857, 47651943, 133988401, 211357431, 98118689, -551073657, -2045695727, -3932792553, -3615594751
Offset: 0
Examples
G.f. = 2 + 3*x + x^2 - 9*x^3 - 31*x^4 - 57*x^5 - 47*x^6 + 87*x^7 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-4).
Programs
-
Haskell
a247563 n = a247563_list !! n a247563_list = 2 : 3 : zipWith (-) (map (* 3) $ tail a247563_list) (map (* 4) a247563_list) -- Reinhard Zumkeller, Sep 20 2014
-
Magma
[n le 2 select n+1 else 3*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Dec 05 2015
-
Magma
m:=25; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((2 - 3*x)/(1-3*x+4*x^2))); // G. C. Greubel, Aug 04 2018 -
Mathematica
{a[0], a[1]} = {2, 3}; a[n_] := a[n] = 3 a[n - 1] - 4 a[n - 2]; Table[a@ n, {n, 0, 32}] (* Michael De Vlieger, Dec 04 2015 *) CoefficientList[Series[(2-3*x)/(1-3*x+4*x^2), {x, 0, 60}], x] (* G. C. Greubel, Aug 04 2018 *)
-
PARI
{a(n) = if( n<0, n=-n; 4^-n, 1) * polcoeff( (2 - 3*x) / (1 - 3*x + 4*x^2) + x * O(x^n), n)};
Formula
G.f.: (2 - 3*x) / (1 - 3*x + 4*x^2).
a(n) = a(-n) * 4^n for all n in Z.
a(n) = (-1)^n * A128415(n) if n > 0.
a(n) = ((3 + sqrt(-7))/2)^n + ((3 - sqrt(-7))/2)^n. - Raphie Frank, Dec 04 2015
Comments