A247792 a(n) = 9*n^2 + 1.
1, 10, 37, 82, 145, 226, 325, 442, 577, 730, 901, 1090, 1297, 1522, 1765, 2026, 2305, 2602, 2917, 3250, 3601, 3970, 4357, 4762, 5185, 5626, 6085, 6562, 7057, 7570, 8101, 8650, 9217, 9802, 10405, 11026, 11665, 12322, 12997, 13690, 14401, 15130, 15877, 16642, 17425, 18226, 19045, 19882
Offset: 0
Examples
a(1) = (2^2 + 4^2)/2 = 3^2 + 1 = 10, a(2) = (5^2 + 7^2)/2 = 6^2 + 1 = 37, a(3) = (8^2 + 10^2)/2 = 9^2 + 1 = 82. - _Miquel Cerda_, Jun 25 2016
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[9*n^2+1: n in [0..60]]; // Vincenzo Librandi, Sep 27 2014
-
Maple
A247792:=n->9*n^2 + 1: seq(A247792(n), n=0..80); # Wesley Ivan Hurt, Jun 25 2016
-
Mathematica
(3Range[0, 49])^2 + 1 (* Alonso del Arte, Sep 24 2014 *) CoefficientList[Series[(1 + 7 x + 10 x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 27 2014 *)
-
PARI
a(n)=9*n^2+1 \\ Charles R Greathouse IV, Sep 26 2014
-
Python
for n in range (0,100): print (9*n**2+1)
Formula
a(n) = (3n)^2 + 1 = 9n^2 + 1 = A016766(n) + 1.
G.f.: (1+7*x+10*x^2)/(1-x)^3. - Vincenzo Librandi, Sep 27 2014
From Ilya Gutkovskiy, Jun 25 2016: (Start)
E.g.f.: (1 + 9*x + 9*x^2)*exp(x).
Dirichlet g.f.: 9*zeta(s-2) + zeta(s).
Sum_{n>=0} 1/a(n) = (3 + Pi*coth(Pi/3))/6. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Wesley Ivan Hurt, Jun 25 2016
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/3)*csch(Pi/3))/2. - Amiram Eldar, Jul 15 2020
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/3)*sinh(sqrt(2)*Pi/3).
Product_{n>=1} (1 - 1/a(n)) = (Pi/3)*csch(Pi/3). (End)
Comments