cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247792 a(n) = 9*n^2 + 1.

Original entry on oeis.org

1, 10, 37, 82, 145, 226, 325, 442, 577, 730, 901, 1090, 1297, 1522, 1765, 2026, 2305, 2602, 2917, 3250, 3601, 3970, 4357, 4762, 5185, 5626, 6085, 6562, 7057, 7570, 8101, 8650, 9217, 9802, 10405, 11026, 11665, 12322, 12997, 13690, 14401, 15130, 15877, 16642, 17425, 18226, 19045, 19882
Offset: 0

Views

Author

Karl V. Keller, Jr., Sep 23 2014

Keywords

Comments

The odd numbers of the form 9n^2 + 1 are listed in A158591 (36n^2 + 1).
The even numbers of the form 9n^2 + 1 are given by 36x^2 - 36x + 10, x > 0.
Every integer n>0 give three perfect squares and consecutives from 2^2. The formulas for each value of n are: a(n)-6n, a(n)-1 and a(n)+6n. - Miquel Cerda, Sep 19 2016
These squares are, for n>0, A000290(3*n-1), 3*n and (3n+1) and the sum of them is 3*a(n) - 1. - Miquel Cerda, Sep 26 2016

Examples

			a(1) = (2^2 + 4^2)/2 = 3^2 + 1 = 10, a(2) = (5^2 + 7^2)/2 = 6^2 + 1 = 37, a(3) = (8^2 + 10^2)/2 = 9^2 + 1 = 82. - _Miquel Cerda_, Jun 25 2016
		

Crossrefs

Cf. A016766, A158591 (36n^2 + 1), A156226 (primes of the form 9n^2 + 1).
Cf. also A000290.

Programs

Formula

a(n) = (3n)^2 + 1 = 9n^2 + 1 = A016766(n) + 1.
G.f.: (1+7*x+10*x^2)/(1-x)^3. - Vincenzo Librandi, Sep 27 2014
a(n) = ((3n-1)^2 + (3n+1)^2)/2 = (A016790(n-1) + A016778(n))/2. - Miquel Cerda, Jun 25 2016
From Ilya Gutkovskiy, Jun 25 2016: (Start)
E.g.f.: (1 + 9*x + 9*x^2)*exp(x).
Dirichlet g.f.: 9*zeta(s-2) + zeta(s).
Sum_{n>=0} 1/a(n) = (3 + Pi*coth(Pi/3))/6. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Wesley Ivan Hurt, Jun 25 2016
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/3)*csch(Pi/3))/2. - Amiram Eldar, Jul 15 2020
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/3)*sinh(sqrt(2)*Pi/3).
Product_{n>=1} (1 - 1/a(n)) = (Pi/3)*csch(Pi/3). (End)