cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A016778 a(n) = (3*n+1)^2.

Original entry on oeis.org

1, 16, 49, 100, 169, 256, 361, 484, 625, 784, 961, 1156, 1369, 1600, 1849, 2116, 2401, 2704, 3025, 3364, 3721, 4096, 4489, 4900, 5329, 5776, 6241, 6724, 7225, 7744, 8281, 8836, 9409, 10000, 10609, 11236, 11881, 12544, 13225, 13924, 14641, 15376, 16129, 16900, 17689
Offset: 0

Views

Author

Keywords

Comments

From Paul Curtz, Mar 28 2019: (Start)
Sequence is a spoke of the hexagonal spiral built from the terms of A016777:
.
\
100--97--94--91
\ \
49--46--43 88
/ \ \ \
52 16--13 40 85
/ / \ \ \ \
55 19 1 10 37 82
/ / / / / /
58 22 4---7 34 79
\ \ / /
61 25--28--31 76
\ /
64--67--70--73
(End)

Crossrefs

Programs

Formula

a(n) = a(n-1) + 3*(6*n-1); a(0)=1. - Vincenzo Librandi, Nov 20 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=16, a(2)=49. - Harvey P. Dale, Mar 03 2013
a(n) = A247792(n) + 6*n. - Miquel Cerda, Oct 23 2016
G.f.: (1 + 13*x + 4*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Oct 23 2016
a(n) = A000212(3*n) + A000212(1+3*n) + A000212(2+3*n). - Paul Curtz, Mar 28 2019
From Amiram Eldar, Nov 12 2020: (Start)
Sum_{n>=0} 1/a(n) = A214550.
Sum_{n>=0} (-1)^n/a(n) = A262178. (End)
From Elmo R. Oliveira, May 29 2025: (Start)
E.g.f.: exp(x)*(1 + 15*x + 9*x^2).
a(n) = A000290(A016777(n)) = A016777(n)^2. (End)

A069131 Centered 18-gonal numbers.

Original entry on oeis.org

1, 19, 55, 109, 181, 271, 379, 505, 649, 811, 991, 1189, 1405, 1639, 1891, 2161, 2449, 2755, 3079, 3421, 3781, 4159, 4555, 4969, 5401, 5851, 6319, 6805, 7309, 7831, 8371, 8929, 9505, 10099, 10711, 11341, 11989, 12655, 13339, 14041, 14761, 15499, 16255, 17029, 17821
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Equals binomial transform of [1, 18, 18, 0, 0, 0, ...]. Example: a(3) = 55 = (1, 2, 1) dot (1, 18, 18) = (1 + 36 + 18). - Gary W. Adamson, Aug 24 2010
Narayana transform (A001263) of [1, 18, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
From Lamine Ngom, Aug 19 2021: (Start)
Sequence is a spoke of the hexagonal spiral built from the terms of A016777 (see illustration in links section).
a(n) is a bisection of A195042.
a(n) is a trisection of A028387.
a(n) + 1 is promic (A002378).
a(n) + 2 is a trisection of A002061.
a(n) + 9 is the arithmetic mean of its neighbors.
4*a(n) + 5 is a square: A016945(n)^2. (End)

Examples

			a(5) = 181 because 9*5^2 - 9*5 + 1 = 225 - 45 + 1 = 181.
		

Crossrefs

Programs

Formula

a(n) = 9*n^2 - 9*n + 1.
a(n) = 18*n + a(n-1) - 18 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: ( x*(1+16*x+x^2) ) / ( (1-x)^3 ). - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=19, a(3)=55. - Harvey P. Dale, Jan 20 2014
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(5)*Pi/6)/(3*sqrt(5)).
Sum_{n>=1} a(n)/n! = 10*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 10/e - 1. (End)
From Lamine Ngom, Aug 19 2021: (Start)
a(n) = 18*A000217(n) + 1 = 9*A002378(n) + 1.
a(n) = 3*A003215(n) - 2.
a(n) = A247792(n) - 9*n.
a(n) = A082040(n) + A304163(n) - a(n-1) = A016778(n) + A016790(n) - a(n-1), n > 0.
a(n) + a(n+1) = 2*A247792(n) = A010008(n), n > 0.
a(n+1) - a(n) = 18*n = A008600(n). (End)
From Leo Tavares, Oct 31 2021: (Start)
a(n)= A000290(n) + A139278(n-1)
a(n) = A069129(n) + A002378(n-1)
a(n) = A062786(n) + 8*A000217(n-1)
a(n) = A062786(n) + A033996(n-1)
a(n) = A060544(n) + 9*A000217(n-1)
a(n) = A060544(n) + A027468(n-1)
a(n) = A016754(n-1) + 10*A000217(n-1)
a(n) = A016754(n-1) + A124080
a(n) = A069099(n) + 11*A000217(n-1)
a(n) = A069099(n) + A152740(n-1)
a(n) = A003215(n-1) + 12*A000217(n-1)
a(n) = A003215(n-1) + A049598(n-1)
a(n) = A005891(n-1) + 13*A000217(n-1)
a(n) = A005891(n-1) + A152741(n-1)
a(n) = A001844(n) + 14*A000217(n-1)
a(n) = A001844(n) + A163756(n-1)
a(n) = A005448(n) + 15*A000217(n-1)
a(n) = A005448(n) + A194715(n-1). (End)
E.g.f.: exp(x)*(1 + 9*x^2) - 1. - Nikolaos Pantelidis, Feb 06 2023

A158591 a(n) = 36*n^2 + 1.

Original entry on oeis.org

1, 37, 145, 325, 577, 901, 1297, 1765, 2305, 2917, 3601, 4357, 5185, 6085, 7057, 8101, 9217, 10405, 11665, 12997, 14401, 15877, 17425, 19045, 20737, 22501, 24337, 26245, 28225, 30277, 32401, 34597, 36865, 39205, 41617, 44101, 46657, 49285, 51985, 54757, 57601
Offset: 0

Views

Author

Vincenzo Librandi, Mar 22 2009

Keywords

Comments

The identity (36*n^2 + 1)^2 - (324*n^2 + 18)*(2*n)^2 = 1 can be written as a(n)^2 - A158590(n)*A005843(n)^2 = 1.

Crossrefs

Programs

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -(1+34*x+37*x^2)/(x-1)^3.
From Amiram Eldar, Mar 14 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/6)*Pi/6 + 1)/2.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/6)*Pi/6 + 1)/2. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: exp(x)*(1 + 36*x + 36*x^2).
a(n) = A247792(2*n). (End)

Extensions

Comment rewritten, formula replaced by R. J. Mathar, Oct 28 2009

A010008 a(0) = 1, a(n) = 18*n^2 + 2 for n>0.

Original entry on oeis.org

1, 20, 74, 164, 290, 452, 650, 884, 1154, 1460, 1802, 2180, 2594, 3044, 3530, 4052, 4610, 5204, 5834, 6500, 7202, 7940, 8714, 9524, 10370, 11252, 12170, 13124, 14114, 15140, 16202, 17300, 18434, 19604, 20810, 22052, 23330, 24644, 25994, 27380, 28802, 30260
Offset: 0

Views

Author

Keywords

Comments

The identity (18*n^2+2)^2-(9*n^2+2)*(6*n)^2=4 can be written as a(n+1)^2-A010002(n+1)*A008588(n+1)^2=4. - Vincenzo Librandi, Feb 07 2012

Crossrefs

After 20, all terms are in A000408.
Cf. A206399.

Programs

  • Magma
    [1] cat [18*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
  • Mathematica
    Join[{1}, 18 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
    Join[{1}, LinearRecurrence[{3, -3, 1}, {20, 74, 164}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)

Formula

G.f.: (1+x)*(1+16*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
a(n) = (3*n-1)^2+(3*n+1)^2 = (n-1)^2+(n+1)^2+(4*n)^2 for n>0. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*18+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4+ (1/12)*Pi*coth(Pi/3) = 1.0853330948... - R. J. Mathar, May 07 2024
a(n) = 2*A247792(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A069131(n)+A069131(n+1). - R. J. Mathar, May 07 2024

Extensions

More terms from Bruno Berselli, Feb 06 2012

A157888 a(n) = 81*n^2 + 9.

Original entry on oeis.org

90, 333, 738, 1305, 2034, 2925, 3978, 5193, 6570, 8109, 9810, 11673, 13698, 15885, 18234, 20745, 23418, 26253, 29250, 32409, 35730, 39213, 42858, 46665, 50634, 54765, 59058, 63513, 68130, 72909, 77850, 82953, 88218, 93645, 99234, 104985, 110898, 116973, 123210
Offset: 1

Views

Author

Vincenzo Librandi, Mar 08 2009

Keywords

Comments

The identity (18*n^2 + 1)^2 - (81*n^2 + 9)*(2*n)^2 = 1 can be written as A157889(n)^2 - a(n)*A005843(n+1)^2 = 1. - Vincenzo Librandi, Feb 05 2012

Crossrefs

Programs

  • Magma
    I:=[90, 333, 738]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 05 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {90, 333, 738}, 40] (* Vincenzo Librandi, Feb 05 2012 *)
    81*Range[40]^2+9 (* Harvey P. Dale, Aug 05 2015 *)
  • PARI
    for(n=1, 40, print1(81*n^2 + 9", ")); \\ Vincenzo Librandi, Feb 05 2012

Formula

From Vincenzo Librandi, Feb 05 2012: (Start)
G.f: x*(90 + 63*x + 9*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 07 2023: (Start)
Sum_{n>=1} 1/a(n) = (coth(Pi/3)*Pi/3 - 1)/18.
Sum_{n>=1} (-1)^(n+1)/a(n) = (1 - cosech(Pi/3)*Pi/3)/18. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 9*(exp(x)*(9*x^2 + + 9*x + 1) - 1).
a(n) = 9*A247792(n). (End)
Showing 1-5 of 5 results.