cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A247792 a(n) = 9*n^2 + 1.

Original entry on oeis.org

1, 10, 37, 82, 145, 226, 325, 442, 577, 730, 901, 1090, 1297, 1522, 1765, 2026, 2305, 2602, 2917, 3250, 3601, 3970, 4357, 4762, 5185, 5626, 6085, 6562, 7057, 7570, 8101, 8650, 9217, 9802, 10405, 11026, 11665, 12322, 12997, 13690, 14401, 15130, 15877, 16642, 17425, 18226, 19045, 19882
Offset: 0

Views

Author

Karl V. Keller, Jr., Sep 23 2014

Keywords

Comments

The odd numbers of the form 9n^2 + 1 are listed in A158591 (36n^2 + 1).
The even numbers of the form 9n^2 + 1 are given by 36x^2 - 36x + 10, x > 0.
Every integer n>0 give three perfect squares and consecutives from 2^2. The formulas for each value of n are: a(n)-6n, a(n)-1 and a(n)+6n. - Miquel Cerda, Sep 19 2016
These squares are, for n>0, A000290(3*n-1), 3*n and (3n+1) and the sum of them is 3*a(n) - 1. - Miquel Cerda, Sep 26 2016

Examples

			a(1) = (2^2 + 4^2)/2 = 3^2 + 1 = 10, a(2) = (5^2 + 7^2)/2 = 6^2 + 1 = 37, a(3) = (8^2 + 10^2)/2 = 9^2 + 1 = 82. - _Miquel Cerda_, Jun 25 2016
		

Crossrefs

Cf. A016766, A158591 (36n^2 + 1), A156226 (primes of the form 9n^2 + 1).
Cf. also A000290.

Programs

Formula

a(n) = (3n)^2 + 1 = 9n^2 + 1 = A016766(n) + 1.
G.f.: (1+7*x+10*x^2)/(1-x)^3. - Vincenzo Librandi, Sep 27 2014
a(n) = ((3n-1)^2 + (3n+1)^2)/2 = (A016790(n-1) + A016778(n))/2. - Miquel Cerda, Jun 25 2016
From Ilya Gutkovskiy, Jun 25 2016: (Start)
E.g.f.: (1 + 9*x + 9*x^2)*exp(x).
Dirichlet g.f.: 9*zeta(s-2) + zeta(s).
Sum_{n>=0} 1/a(n) = (3 + Pi*coth(Pi/3))/6. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Wesley Ivan Hurt, Jun 25 2016
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/3)*csch(Pi/3))/2. - Amiram Eldar, Jul 15 2020
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/3)*sinh(sqrt(2)*Pi/3).
Product_{n>=1} (1 - 1/a(n)) = (Pi/3)*csch(Pi/3). (End)

A158590 a(n) = 324*n^2 + 18.

Original entry on oeis.org

18, 342, 1314, 2934, 5202, 8118, 11682, 15894, 20754, 26262, 32418, 39222, 46674, 54774, 63522, 72918, 82962, 93654, 104994, 116982, 129618, 142902, 156834, 171414, 186642, 202518, 219042, 236214, 254034, 272502, 291618, 311382, 331794, 352854, 374562, 396918
Offset: 0

Views

Author

Vincenzo Librandi, Mar 22 2009

Keywords

Comments

The identity (36*n^2 + 1)^2 - (324*n^2 + 18)*(2*n)^2 = 1 can be written as A158591(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[18, 342, 1314]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {18, 342, 1314}, 50] (* Vincenzo Librandi, Feb 16 2012 *)
    324 Range[0,40]^2+18 (* Harvey P. Dale, Nov 22 2018 *)
  • PARI
    for(n=0, 40, print1(324*n^2 + 18", ")); \\ Vincenzo Librandi, Feb 16 2012

Formula

G.f.: -18*(1 + 16*x + 19*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 14 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/(3*sqrt(2)))*Pi/(3*sqrt(2)) + 1)/36.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(3*sqrt(2)))*Pi/(3*sqrt(2)) + 1)/36. (End)
E.g.f.: 18*exp(x)*(1 + 18*x + 18*x^2). - Elmo R. Oliveira, Jan 15 2025

Extensions

Comment rewritten, formula replaced by R. J. Mathar, Oct 28 2009

A158739 a(n) = 1296*n^2 + 36.

Original entry on oeis.org

36, 1332, 5220, 11700, 20772, 32436, 46692, 63540, 82980, 105012, 129636, 156852, 186660, 219060, 254052, 291636, 331812, 374580, 419940, 467892, 518436, 571572, 627300, 685620, 746532, 810036, 876132, 944820, 1016100, 1089972, 1166436, 1245492, 1327140, 1411380
Offset: 0

Views

Author

Vincenzo Librandi, Mar 25 2009

Keywords

Comments

The identity (72*n^2 + 1)^2 - (1296*n^2 + 36)*(2*n)^2 = 1 can be written as A158740(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[36, 1332, 5220]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 21 2012
    
  • Maple
    A158739:=n->1296*n^2+36: seq(A158739(n), n=0..40); # Wesley Ivan Hurt, Nov 20 2014
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {36, 1332, 5220}, 50] (* Vincenzo Librandi, Feb 21 2012 *)
  • PARI
    for(n=0, 40, print1(1296*n^2 + 36", ")); \\ Vincenzo Librandi, Feb 21 2012

Formula

G.f.: -36*(1+34*x+37*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 22 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/6)*Pi/6 + 1)/72.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/6)*Pi/6 + 1)/72. (End)
From Elmo R. Oliveira, Jan 26 2025: (Start)
E.g.f.: 36*exp(x)*(1 + 36*x + 36*x^2).
a(n) = 36*A158591(n). (End)

Extensions

Comment rewritten, a(0) added and formula replaced by R. J. Mathar, Oct 22 2009

A193252 Great rhombicuboctahedron with faces of centered polygons.

Original entry on oeis.org

1, 75, 365, 1015, 2169, 3971, 6565, 10095, 14705, 20539, 27741, 36455, 46825, 58995, 73109, 89311, 107745, 128555, 151885, 177879, 206681, 238435, 273285, 311375, 352849, 397851, 446525, 499015, 555465, 616019, 680821, 750015, 823745, 902155, 985389, 1073591
Offset: 1

Views

Author

Craig Ferguson, Jul 19 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a great rhombicosidodecahedron. Each iteration requires the addition of (n-2) edge units and (n-1) vertices to complete the centered polygon of each face: centered squares, centered octagons and centered hexagons.

Crossrefs

First differences in 2*A158591.
Cf. A001844 (centered square numbers), A016754 (centered octagonal numbers), A003215 (centered hexagonal numbers).

Programs

  • Excel
    =24*ROW()^3-36*ROW()^2+14*ROW()-1
    
  • GAP
    List([1..40], n-> 24*n^3 -36*n^2 +14*n -1); # G. C. Greubel, Feb 26 2019
  • Magma
    A069190:=func; [(2*n-1)*A069190(n): n in [1..40]];  // Bruno Berselli, Jul 21 2011
    
  • Mathematica
    Table[24n^3-36n^2+14n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,75,365,1015},40] (* Harvey P. Dale, Jul 27 2011 *)
  • PARI
    for(n=1,40, print1(24*n^3-36*n^2+14*n-1", "));  \\ Bruno Berselli, Jul 21 2011
    
  • Sage
    [24*n^3 -36*n^2 +14*n -1 for n in (1..40)] # G. C. Greubel, Feb 26 2019
    

Formula

a(n) = 24*n^3 - 36*n^2 + 14*n - 1.
G.f.: x*(1+x)*(1+70*x+x^2)/(1-x)^4; a(n) = (2*n-1)*A069190(n). - Bruno Berselli, Jul 21 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=75, a(2)=365, a(3)=1015. - Harvey P. Dale, Jul 27 2011
a(n) = 72 * A000330(n-1) + A005408(n-1). - Bruce J. Nicholson, Feb 23 2019
E.g.f.: 1 + (-1 + 2*x + 36*x^2 + 24*x^3)*exp(x). - G. C. Greubel, Feb 26 2019
Showing 1-4 of 4 results.