A248337 a(n) = 6^n - 4^n.
0, 2, 20, 152, 1040, 6752, 42560, 263552, 1614080, 9815552, 59417600, 358602752, 2160005120, 12993585152, 78095728640, 469111242752, 2816814940160, 16909479575552, 101491237191680, 609084862103552, 3655058928435200, 21932552593866752, 131604111656222720, 789659854309425152, 4738099863344906240, 28429162130022858752
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-24).
Crossrefs
Programs
-
Magma
[6^n-4^n: n in [0..30]];
-
Mathematica
Table[6^n - 4^n, {n,0,30}] CoefficientList[Series[(2 x)/((1-4 x)(1-6 x)), {x, 0, 30}], x] LinearRecurrence[{10,-24},{0,2},30] (* Harvey P. Dale, Aug 18 2024 *)
-
PARI
vector(20,n,6^(n-1)-4^(n-1)) \\ Derek Orr, Oct 05 2014
-
SageMath
A248337=BinaryRecurrenceSequence(10,-24,0,2) [A248337(n) for n in range(31)] # G. C. Greubel, Nov 11 2024
Formula
G.f.: 2*x/((1-4*x)*(1-6*x)).
a(n) = 10*a(n-1) - 24*a(n-2).
a(n) = 2*A081199(n). - Bruno Berselli, Oct 05 2014
E.g.f.: 2*exp(5*x)*sinh(x). - G. C. Greubel, Nov 11 2024
Extensions
More terms added by G. C. Greubel, Nov 11 2024