cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A248349 Numbers k such that 10^k + 123456789 is prime.

Original entry on oeis.org

4, 11, 17, 23, 26, 79, 82, 221, 526, 821, 1204, 5392, 13139, 35879, 60991, 77669
Offset: 1

Views

Author

Derek Orr, Oct 05 2014

Keywords

Comments

a(14) > 20000.
a(17) > 2*10^5. - Robert Price, Oct 26 2019

Crossrefs

Programs

  • Magma
    [n: n in [1..500] | IsPrime(10^n + 123456789)]; // Vincenzo Librandi, Oct 12 2014
  • Mathematica
    Select[Range[10^4], PrimeQ[10^# + 123456789] &] (* Robert Price, Sep 08 2019 *)
  • PARI
    for(n=1,10^4,if(ispseudoprime(10^n + 123456789),print1(n,", ")))
    

Extensions

a(14)-a(16) from Robert Price, Oct 26 2019

A248351 Numbers k such that 10^k + 987654321 is prime.

Original entry on oeis.org

6, 11, 15, 27, 42, 113, 135, 186, 207, 503, 2999, 3005, 3487, 5718, 7265, 7629, 11987, 16063, 27379, 64770, 73579, 96504, 116557
Offset: 1

Views

Author

Derek Orr, Oct 05 2014

Keywords

Comments

Note that 987654321 is the largest pandigital number in base-10, omitting 0.

Crossrefs

Programs

  • Magma
    [n: n in [1..500] | IsPrime(10^n+987654321)]; // Vincenzo Librandi, Oct 12 2014
  • Mathematica
    Select[Range[1000], PrimeQ[10^# + 987654321] &] (* Vincenzo Librandi, Oct 12 2014 *)
  • PARI
    for(n=1,10^4,if(ispseudoprime(10^n+987654321),print1(n,", ")))
    

Extensions

a(9) corrected and a(19)-a(23) added by Robert Price, Dec 05 2019

A248352 Numbers k such that 10^k - 987654321 is prime.

Original entry on oeis.org

986, 1240, 1928, 4054, 14252, 47528, 101728
Offset: 1

Views

Author

Derek Orr, Oct 05 2014

Keywords

Comments

Note that 987654321 is the largest pandigital number in base-10, omitting 0.

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[10^# - 987654321] &] (* Robert Price, Dec 05 2019 *)
  • PARI
    for(n=1,10^4,if(ispseudoprime(10^n-987654321),print1(n,", ")))

Extensions

a(6)-a(7) from Robert Price, Dec 05 2019

A322985 Numbers k such that 123456789*10^k+1 is prime.

Original entry on oeis.org

1, 5, 17, 23, 25, 28, 91, 187, 287, 398, 899, 1364, 2921, 5125, 5890, 8780, 14881, 35689, 46669, 71861, 111710
Offset: 1

Views

Author

Matthias Baur, Jan 01 2019

Keywords

Comments

a(22) > 1.3*10^5. All numbers up to this bound were sieved using newpgen and sr1sieve. Remaining numbers were checked for primality using Jean Penné's LLR application (BLS (N-1/N+1) test).

Examples

			1 is a term because 1234567891 is prime.
2 is not a term because 12345678901 is composite (it is divisible by 857).
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 1400, PrimeQ[123456789*10^# + 1] &] (* Michael De Vlieger, Jan 04 2019 *)
  • Python
    from sympy.ntheory.primetest import isprime
    for n in range(1,1000):
        if isprime(123456789*10**n+1):
            print(n, end=', ') # Stefano Spezia, Jan 05 2019
Showing 1-4 of 4 results.