cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A259350 Numbers n such that n-1, n, and n+1 are all products of 7 distinct primes.

Original entry on oeis.org

41704979954, 124731595066, 365993436094, 366230785766, 367810728790, 368695198806, 589316590786, 598986161410, 607638803134, 673917791834, 710756189898, 753389272714, 762118572046, 772416848554, 806996241806, 832216749090, 874567856590, 905173650094, 933893335166, 958872775134, 970959170390, 985722818366, 997785568130
Offset: 1

Views

Author

James G. Merickel, Jun 24 2015

Keywords

Comments

A subsequence of A169834. A093550(7)=a(1), that sequence with offset 2 (so actually its 6th term) holding first terms of sequences of this kind.
Other than a(4)=366230785766 and a(18)=905173650094 (with minimax prime factor 1867 for it and its neighbors), the terms were initially discovered by increasing value of the trios' smallest large prime factors. An exhaustive search running multiple (suitably modified) copies of a pre-acceptance PARI program that disposed of fails in a somewhat efficient way and ran about an order of magnitude faster than the analog of the simple program at A259349 required about 1000 window-hours to produce the list given (adding two terms, including one that was unachievable by the increasing-minimax-prime method). Then the much faster program--15 minutes in just one PARI window--shown was developed and edited in here in its place. By specifying the 4 largest prime factors secondary to setting the product of the smallest 3 such that this is at least 627--as must be true for one of 3 relatively prime sphenic numbers--a speedup of over 3.5 orders of magnitude more (over the single order of magnitude that the replaced program managed, for a total of about 10^4.5 in time ratio over the program used for 6 primes) was achieved.
Note: The PARI program avoids duplicates but does not order terms.

Examples

			41704979953 = 7*13*29*41*47*59*139,
41704979954 = 2*11*23*31*83*103*311, and
41704979955 = 3*5*17*19*109*157*503; and no smaller such trio exists, so that a(1)=41704979954.
		

Crossrefs

Programs

  • PARI
    {
    \\Program runs for arbitrary B.\\
    B=10^12;N=primepi(B/(627*17*19*23));
    p=vector(N,n,prime(n));
    in=primepi((B/210)^(1/3));
    P=prod(i=1,27,p[i]);Q=prod(i=28,in,p[i]);
    v=28;d=[[1,2],[-1,1],[-2,-1]];i3=6;
    while(6*p[i3]^5626,
        if(k1*p[i3+1]*p[i3+2]*p[i3+3]*p[i3+4]=k1,v--;Q*=p[v];P/=p[v]));
         r=(B\k1)^(1/4);j1=i3+1;
         while(p[j1]2,
              f=1;if(y1==3,if(a1>j1,f=0));
              if(f,
               b1=gcd(P,b);z1=omega(b1);
               if(z1>2,
                if(z1==3,if(b1>j1,f=0));
                if(f,
                 a2=a/a1;
                 if(gcd(a1,a2)==1,
                  b2=b/b1;
                  if(gcd(b1,b2)==1,
                   a21=gcd(a2,Q);a22=a2/a21;
                   if(gcd(a21,a22)==1,
                    y=y1+omega(a21);
                    if(y>4,
                     if(y<8,
                      b21=gcd(Q,b2);b22=b2/b21;
                      if(gcd(b21,b22)==1,
                       z=z1+omega(b21);
                       if(z>4,
                        if(z<8,
                         if(y+omega(a22)==7,
                          if(z+omega(b22)==7,
                           f1=factor(a1);
                           if(f1[1,1]*f1[2,1]*f1[3,1]
    				

A248350 Numbers n such that 10^n - 123456789 is prime.

Original entry on oeis.org

9, 10, 13, 19, 26, 68, 73, 115, 190, 195, 232, 549, 742, 1502, 2239, 2618, 5143, 8081, 9442, 31402, 77919, 93790, 99434, 120841
Offset: 1

Views

Author

Derek Orr, Oct 05 2014

Keywords

Comments

a(26) > 200000. - Robert Price, Jun 06 2020

Crossrefs

Programs

  • PARI
    for(n=1,10^4,if(ispseudoprime(10^n - 123456789),print1(n,", ")))

Extensions

a(21)-a(25) from Robert Price, Feb 26 2020

A248351 Numbers k such that 10^k + 987654321 is prime.

Original entry on oeis.org

6, 11, 15, 27, 42, 113, 135, 186, 207, 503, 2999, 3005, 3487, 5718, 7265, 7629, 11987, 16063, 27379, 64770, 73579, 96504, 116557
Offset: 1

Views

Author

Derek Orr, Oct 05 2014

Keywords

Comments

Note that 987654321 is the largest pandigital number in base-10, omitting 0.

Crossrefs

Programs

  • Magma
    [n: n in [1..500] | IsPrime(10^n+987654321)]; // Vincenzo Librandi, Oct 12 2014
  • Mathematica
    Select[Range[1000], PrimeQ[10^# + 987654321] &] (* Vincenzo Librandi, Oct 12 2014 *)
  • PARI
    for(n=1,10^4,if(ispseudoprime(10^n+987654321),print1(n,", ")))
    

Extensions

a(9) corrected and a(19)-a(23) added by Robert Price, Dec 05 2019

A248352 Numbers k such that 10^k - 987654321 is prime.

Original entry on oeis.org

986, 1240, 1928, 4054, 14252, 47528, 101728
Offset: 1

Views

Author

Derek Orr, Oct 05 2014

Keywords

Comments

Note that 987654321 is the largest pandigital number in base-10, omitting 0.

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[10^# - 987654321] &] (* Robert Price, Dec 05 2019 *)
  • PARI
    for(n=1,10^4,if(ispseudoprime(10^n-987654321),print1(n,", ")))

Extensions

a(6)-a(7) from Robert Price, Dec 05 2019

A258932 Numbers k such that 10^k + 103 is prime.

Original entry on oeis.org

1, 3, 4, 5, 7, 9, 10, 11, 27, 35, 85, 169, 209, 221, 321, 347, 603, 610, 1229, 1391, 2171, 2303, 2679, 3977, 4545, 5721, 7090, 35877
Offset: 1

Views

Author

Vincenzo Librandi, Jun 15 2015

Keywords

Comments

a(29) > 60000. - Michael S. Branicky, Apr 27 2025

Examples

			For n = 3, a(3) = 10^3 + 103 = 1103, which is prime.
		

Crossrefs

Sequences of the type 10^n+k: A049054 (k=3), A088274 (k=7), A088275 (k=9), A095688 (k=13), A108052 (k=19), A108050 (k=21), A108312 (k=27), A107083 (k=31), A107084 (k=33), A135109 (k=37), A135108 (k=39), A108049 (k=43), A108054 (k=49), A135118 (k=51), A135119 (k=57), A135116 (k=61), A135115 (k=63), A135113 (k=67), A135114 (k=69), A135132 (k=73), A135131 (k=79), A137848 (k=81), A135117 (k=87), A110918 (k=91), A135112 (k=93), A135107 (k=97), A110980 (k=99), this sequence (k=103), A258933 (k=109), A165508 (k=111), A248349 (k=123456789), A248351 (k=987654321).

Programs

  • Magma
    [n: n in [1..600] | IsPrime(10^n+103)];
    
  • Mathematica
    Select[Range[5000], PrimeQ[10^# + 103] &]
  • PARI
    is(n)=ispseudoprime(10^n+103) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(26)-a(28) from Jens Kruse Andersen, Jun 23 2015

A322985 Numbers k such that 123456789*10^k+1 is prime.

Original entry on oeis.org

1, 5, 17, 23, 25, 28, 91, 187, 287, 398, 899, 1364, 2921, 5125, 5890, 8780, 14881, 35689, 46669, 71861, 111710
Offset: 1

Views

Author

Matthias Baur, Jan 01 2019

Keywords

Comments

a(22) > 1.3*10^5. All numbers up to this bound were sieved using newpgen and sr1sieve. Remaining numbers were checked for primality using Jean Penné's LLR application (BLS (N-1/N+1) test).

Examples

			1 is a term because 1234567891 is prime.
2 is not a term because 12345678901 is composite (it is divisible by 857).
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 1400, PrimeQ[123456789*10^# + 1] &] (* Michael De Vlieger, Jan 04 2019 *)
  • Python
    from sympy.ntheory.primetest import isprime
    for n in range(1,1000):
        if isprime(123456789*10**n+1):
            print(n, end=', ') # Stefano Spezia, Jan 05 2019
Showing 1-6 of 6 results.