A259350
Numbers n such that n-1, n, and n+1 are all products of 7 distinct primes.
Original entry on oeis.org
41704979954, 124731595066, 365993436094, 366230785766, 367810728790, 368695198806, 589316590786, 598986161410, 607638803134, 673917791834, 710756189898, 753389272714, 762118572046, 772416848554, 806996241806, 832216749090, 874567856590, 905173650094, 933893335166, 958872775134, 970959170390, 985722818366, 997785568130
Offset: 1
41704979953 = 7*13*29*41*47*59*139,
41704979954 = 2*11*23*31*83*103*311, and
41704979955 = 3*5*17*19*109*157*503; and no smaller such trio exists, so that a(1)=41704979954.
-
{
\\Program runs for arbitrary B.\\
B=10^12;N=primepi(B/(627*17*19*23));
p=vector(N,n,prime(n));
in=primepi((B/210)^(1/3));
P=prod(i=1,27,p[i]);Q=prod(i=28,in,p[i]);
v=28;d=[[1,2],[-1,1],[-2,-1]];i3=6;
while(6*p[i3]^5626,
if(k1*p[i3+1]*p[i3+2]*p[i3+3]*p[i3+4]=k1,v--;Q*=p[v];P/=p[v]));
r=(B\k1)^(1/4);j1=i3+1;
while(p[j1]2,
f=1;if(y1==3,if(a1>j1,f=0));
if(f,
b1=gcd(P,b);z1=omega(b1);
if(z1>2,
if(z1==3,if(b1>j1,f=0));
if(f,
a2=a/a1;
if(gcd(a1,a2)==1,
b2=b/b1;
if(gcd(b1,b2)==1,
a21=gcd(a2,Q);a22=a2/a21;
if(gcd(a21,a22)==1,
y=y1+omega(a21);
if(y>4,
if(y<8,
b21=gcd(Q,b2);b22=b2/b21;
if(gcd(b21,b22)==1,
z=z1+omega(b21);
if(z>4,
if(z<8,
if(y+omega(a22)==7,
if(z+omega(b22)==7,
f1=factor(a1);
if(f1[1,1]*f1[2,1]*f1[3,1]
A248350
Numbers n such that 10^n - 123456789 is prime.
Original entry on oeis.org
9, 10, 13, 19, 26, 68, 73, 115, 190, 195, 232, 549, 742, 1502, 2239, 2618, 5143, 8081, 9442, 31402, 77919, 93790, 99434, 120841
Offset: 1
-
for(n=1,10^4,if(ispseudoprime(10^n - 123456789),print1(n,", ")))
A248351
Numbers k such that 10^k + 987654321 is prime.
Original entry on oeis.org
6, 11, 15, 27, 42, 113, 135, 186, 207, 503, 2999, 3005, 3487, 5718, 7265, 7629, 11987, 16063, 27379, 64770, 73579, 96504, 116557
Offset: 1
-
[n: n in [1..500] | IsPrime(10^n+987654321)]; // Vincenzo Librandi, Oct 12 2014
-
Select[Range[1000], PrimeQ[10^# + 987654321] &] (* Vincenzo Librandi, Oct 12 2014 *)
-
for(n=1,10^4,if(ispseudoprime(10^n+987654321),print1(n,", ")))
a(9) corrected and a(19)-a(23) added by
Robert Price, Dec 05 2019
A248352
Numbers k such that 10^k - 987654321 is prime.
Original entry on oeis.org
986, 1240, 1928, 4054, 14252, 47528, 101728
Offset: 1
-
Select[Range[10000], PrimeQ[10^# - 987654321] &] (* Robert Price, Dec 05 2019 *)
-
for(n=1,10^4,if(ispseudoprime(10^n-987654321),print1(n,", ")))
A258932
Numbers k such that 10^k + 103 is prime.
Original entry on oeis.org
1, 3, 4, 5, 7, 9, 10, 11, 27, 35, 85, 169, 209, 221, 321, 347, 603, 610, 1229, 1391, 2171, 2303, 2679, 3977, 4545, 5721, 7090, 35877
Offset: 1
For n = 3, a(3) = 10^3 + 103 = 1103, which is prime.
Sequences of the type 10^n+k:
A049054 (k=3),
A088274 (k=7),
A088275 (k=9),
A095688 (k=13),
A108052 (k=19),
A108050 (k=21),
A108312 (k=27),
A107083 (k=31),
A107084 (k=33),
A135109 (k=37),
A135108 (k=39),
A108049 (k=43),
A108054 (k=49),
A135118 (k=51),
A135119 (k=57),
A135116 (k=61),
A135115 (k=63),
A135113 (k=67),
A135114 (k=69),
A135132 (k=73),
A135131 (k=79),
A137848 (k=81),
A135117 (k=87),
A110918 (k=91),
A135112 (k=93),
A135107 (k=97),
A110980 (k=99), this sequence (k=103),
A258933 (k=109),
A165508 (k=111),
A248349 (k=123456789),
A248351 (k=987654321).
-
[n: n in [1..600] | IsPrime(10^n+103)];
-
Select[Range[5000], PrimeQ[10^# + 103] &]
-
is(n)=ispseudoprime(10^n+103) \\ Charles R Greathouse IV, Jun 13 2017
A322985
Numbers k such that 123456789*10^k+1 is prime.
Original entry on oeis.org
1, 5, 17, 23, 25, 28, 91, 187, 287, 398, 899, 1364, 2921, 5125, 5890, 8780, 14881, 35689, 46669, 71861, 111710
Offset: 1
1 is a term because 1234567891 is prime.
2 is not a term because 12345678901 is composite (it is divisible by 857).
-
Select[Range@ 1400, PrimeQ[123456789*10^# + 1] &] (* Michael De Vlieger, Jan 04 2019 *)
-
from sympy.ntheory.primetest import isprime
for n in range(1,1000):
if isprime(123456789*10**n+1):
print(n, end=', ') # Stefano Spezia, Jan 05 2019
Showing 1-6 of 6 results.
Comments