cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A248720 a(n) = (n*(n+1))^5.

Original entry on oeis.org

0, 32, 7776, 248832, 3200000, 24300000, 130691232, 550731776, 1934917632, 5904900000, 16105100000, 40074642432, 92389579776, 199690286432, 408410100000, 796262400000, 1488827973632, 2682916351776, 4678757435232, 7923516800000, 13069123200000
Offset: 0

Views

Author

Eugene Chong, Oct 16 2014

Keywords

Comments

This is the sequence (2^5)*A059860(n)= (2*binomial(n+1,2))^5, n >= 0. - Wolfdieter Lang, Nov 03 2014

Crossrefs

Cf. A059860, A002378 (n*(n+1)), A035287(n+1) ((n*(n+1))^2), A060459 ((n*(n+1))^3), A248619 ((n*(n+1))^4).

Programs

  • Magma
    [(n*(n+1))^5: n in [0..30]];
  • Maple
    [ seq(n^5*(n+1)^5, n = 0..100) ];
  • Mathematica
    Table[(n (n + 1))^5, {n, 0, 70}] (* or *) CoefficientList[Series[32 x (x^8 + 232 x^7 + 5158 x^6 + 27664 x^5 + 47290 x^4 + 27664 x^3 + 5158 x^2 + 232 x + 1)/(1 - x)^11, {x, 0, 30}], x]
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{0,32,7776,248832,3200000,24300000,130691232,550731776,1934917632,5904900000,16105100000},20] (* Harvey P. Dale, Apr 23 2017 *)

Formula

a(n) = A002378(n)^5.
a(n) = 32*A059860(n) for n>0.
G.f.: 32*x*(x^8 + 232*x^7 + 5158*x^6 + 27664*x^5 + 47290*x^4 + 27664*x^3 + 5158*x^2 + 232*x + 1) / (1 - x)^11 (from A059860).
Sum_{n>=1} 1/a(n) = 126 - 35*Pi^2/3 - Pi^4/9. - Vaclav Kotesovec, Sep 25 2019
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11). - Wesley Ivan Hurt, Jan 20 2024

Extensions

Terms a(32) and beyond corrected by Andrew Howroyd, Feb 20 2018

A249076 a(n) = (n*(n+1))^6.

Original entry on oeis.org

0, 64, 46656, 2985984, 64000000, 729000000, 5489031744, 30840979456, 139314069504, 531441000000, 1771561000000, 5289852801024, 14412774445056, 36343632130624, 85766121000000, 191102976000000, 404961208827904, 820972403643456, 1600135042849344, 3010936384000000, 5489031744000000
Offset: 0

Views

Author

Jiwoo Lee, Oct 20 2014

Keywords

Crossrefs

Cf. A059978; A002378: n*(n+1); A035282: n^2 *(n+1)^2; A060459: n^3 *(n+1)^3; A248619: n^4 *(n+1)^4;

Programs

  • Magma
    [(n*(n+1))^6: n in [0..30]];
    
  • Maple
    [ seq(n^6*(n+1)^6, n = 0..100) ];
  • Mathematica
    Table[(n (n + 1))^6, {n, 0, 70}] (* or *)
    CoefficientList[Series[64*x*(x^10 + 716 x^9 + 37257 x^8 + 450048 x^7 + 1822014 x^6 + 2864328 x^5 + 1822014 x^4 + 450048 x^3 + 37257 x^2 + 716 x + 1)/(1 - x)^13, {x, 0, 30}], x]
  • PARI
    a(n)=(n*(n+1))^6 \\ Charles R Greathouse IV, Oct 21 2014

Formula

a(n) = A002378(n)^6.
a(n) = 64*A059978(n) for n>0.
G.f.: 64*x*(x^10 + 716*x^9 + 37257*x^8 + 450048*x^7 + 1822014*x^6 + 2864328*x^5 + 1822014*x^4 + 450048*x^3 + 37257*x^2 + 716*x + 1)/(1 - x)^13. [corrected by Georg Fischer, May 10 2019]
Sum_{n>=1} 1/a(n) = -462 + 42*Pi^2 + 7*Pi^4/15 + 2*Pi^6/945. - Vaclav Kotesovec, Sep 25 2019

Extensions

Incorrect term corrected by Colin Barker, Oct 21 2014
Terms a(21) and beyond corrected by Andrew Howroyd, Feb 22 2018

A327773 Decimal expansion of Sum_{k>=1} 1/(k*(k+1))^4.

Original entry on oeis.org

0, 6, 3, 3, 2, 7, 8, 0, 4, 3, 8, 6, 8, 0, 5, 1, 1, 2, 4, 8, 0, 3, 1, 0, 7, 2, 6, 0, 0, 2, 8, 3, 9, 5, 8, 9, 9, 2, 8, 4, 9, 9, 9, 2, 7, 9, 7, 3, 4, 2, 2, 5, 7, 0, 0, 7, 7, 1, 1, 7, 0, 1, 8, 2, 8, 8, 3, 9, 0, 6, 4, 0, 4, 3, 7, 9, 5, 5, 1, 6, 9, 7, 8, 6, 3, 9, 7, 2, 8, 4, 2, 7, 8, 5, 7, 3, 9, 4, 0, 5, 4, 6, 0, 6, 8, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 25 2019

Keywords

Comments

Sum_{k>=1} 1/(k*(k+1)) = 1
Sum_{k>=1} 1/(k*(k+1))^2 = -3 + Pi^2/3
Sum_{k>=1} 1/(k*(k+1))^3 = 10 - Pi^2
Sum_{k>=1} 1/(k*(k+1))^4 = -35 + 10*Pi^2/3 + Pi^4/45
Sum_{k>=1} 1/(k*(k+1))^5 = 126 - 35*Pi^2/3 - Pi^4/9
Sum_{k>=1} 1/(k*(k+1))^6 = -462 + 42*Pi^2 + 7*Pi^4/15 + 2*Pi^6/945
Sum_{k>=1} 1/(k*(k+1))^7 = 1716 - 154*Pi^2 - 28*Pi^4/15 - 2*Pi^6/135
Sum_{k>=1} 1/(k*(k+1))^8 = -6435 + 572*Pi^2 + 22*Pi^4/3 + 8*Pi^6/105 + Pi^8/4725
Sum_{k>=1} 1/(k*(k+1))^9 = 24310 - 2145*Pi^2 - 143*Pi^4/5 - 22*Pi^6/63 - Pi^8/525
Sum_{k>=1} 1/(k*(k+1))^10 = -92378 + 24310*Pi^2/3 + 1001*Pi^4/9 + 286*Pi^6/189 + 11*Pi^8/945 + 2*Pi^10/93555
In general, for s > 1, Sum_{k>=1} 1/(k*(k+1))^s = (-1)^s * (-binomial(2*s-1, s-1) + Sum_{j=1..floor(s/2)} (-1)^(j+1) * binomial(2*s-2*j-1, s-1) * Bernoulli(2*j) * (2*Pi)^(2*j) / (2*j)!).
Equivalently, for s > 1, Sum_{k>=1} 1/(k*(k+1))^s = (-1)^s * (-binomial(2*s-1, s-1) + 2*Sum_{j=1..floor(s/2)} binomial(2*s-2*j-1, s-1) * zeta(2*j)).

Examples

			0.06332780438680511248031072600283958992849992797342257007711701828839...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(k*(k+1))^4, k=1..infinity), 120);
  • Mathematica
    RealDigits[N[Sum[1/(k*(k + 1))^4, {k, 1, Infinity}], 105]][[1]]
  • PARI
    suminf(k=1, 1/(k*(k+1))^4)

Formula

Equals Pi^4/45 + 10*Pi^2/3 - 35.
Showing 1-3 of 3 results.