cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Eugene Chong

Eugene Chong's wiki page.

Eugene Chong has authored 2 sequences.

A248720 a(n) = (n*(n+1))^5.

Original entry on oeis.org

0, 32, 7776, 248832, 3200000, 24300000, 130691232, 550731776, 1934917632, 5904900000, 16105100000, 40074642432, 92389579776, 199690286432, 408410100000, 796262400000, 1488827973632, 2682916351776, 4678757435232, 7923516800000, 13069123200000
Offset: 0

Author

Eugene Chong, Oct 16 2014

Keywords

Comments

This is the sequence (2^5)*A059860(n)= (2*binomial(n+1,2))^5, n >= 0. - Wolfdieter Lang, Nov 03 2014

Crossrefs

Cf. A059860, A002378 (n*(n+1)), A035287(n+1) ((n*(n+1))^2), A060459 ((n*(n+1))^3), A248619 ((n*(n+1))^4).

Programs

  • Magma
    [(n*(n+1))^5: n in [0..30]];
  • Maple
    [ seq(n^5*(n+1)^5, n = 0..100) ];
  • Mathematica
    Table[(n (n + 1))^5, {n, 0, 70}] (* or *) CoefficientList[Series[32 x (x^8 + 232 x^7 + 5158 x^6 + 27664 x^5 + 47290 x^4 + 27664 x^3 + 5158 x^2 + 232 x + 1)/(1 - x)^11, {x, 0, 30}], x]
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{0,32,7776,248832,3200000,24300000,130691232,550731776,1934917632,5904900000,16105100000},20] (* Harvey P. Dale, Apr 23 2017 *)

Formula

a(n) = A002378(n)^5.
a(n) = 32*A059860(n) for n>0.
G.f.: 32*x*(x^8 + 232*x^7 + 5158*x^6 + 27664*x^5 + 47290*x^4 + 27664*x^3 + 5158*x^2 + 232*x + 1) / (1 - x)^11 (from A059860).
Sum_{n>=1} 1/a(n) = 126 - 35*Pi^2/3 - Pi^4/9. - Vaclav Kotesovec, Sep 25 2019
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11). - Wesley Ivan Hurt, Jan 20 2024

Extensions

Terms a(32) and beyond corrected by Andrew Howroyd, Feb 20 2018

A248619 a(n) = (n*(n+1))^4.

Original entry on oeis.org

0, 16, 1296, 20736, 160000, 810000, 3111696, 9834496, 26873856, 65610000, 146410000, 303595776, 592240896, 1097199376, 1944810000, 3317760000, 5473632256, 8767700496, 13680577296, 20851360000, 31116960000, 45558341136, 65554433296, 92844527616, 129600000000
Offset: 0

Author

Eugene Chong, Oct 09 2014

Keywords

Crossrefs

Cf. A016744, A059977; A002378: n*(n+1); A035287: n^2 *(n-1)^2; A060459: n^3*(n+1)^3.
Cf. A327773.

Programs

  • Magma
    [(n*(n+1))^4: n in [0..30]]; // Vincenzo Librandi, Oct 16 2014
  • Maple
    [ seq(n^4*(n+1)^4, n = 0..100) ];
  • Mathematica
    Table[(n (n + 1))^4, {n, 0, 70}] (* or *) CoefficientList[Series[16 x (1 + 72 x + 603 x^2 + 1168 x^3 + 603 x^4 + 72 x^5 + x^6)/(1 - x)^9, {x, 0, 30}], x] (* Vincenzo Librandi, Oct 16 2014 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,16,1296,20736,160000,810000,3111696,9834496,26873856},30] (* Harvey P. Dale, Sep 09 2016 *)

Formula

a(n) = A002378(n)^4 = A016744(A000217(n)).
a(n) = 16*A059977(n) for n>0.
G.f.: 16*x*(1 + 72*x + 603*x^2 + 1168*x^3 + 603*x^4 + 72*x^5 + x^6)/(1 - x)^9. - Vincenzo Librandi, Oct 16 2014
Sum_{n>=1} 1/a(n) = A327773 = -35 + 10*Pi^2/3 + Pi^4/45. - Vaclav Kotesovec, Sep 25 2019

Extensions

Terms a(76) and beyond corrected by Andrew Howroyd, Feb 20 2018