cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A248682 Decimal expansion of Sum_{n >= 0} (floor(n/2)!)^2/n!.

Original entry on oeis.org

2, 9, 4, 5, 5, 9, 9, 4, 3, 4, 8, 7, 4, 8, 6, 0, 3, 1, 1, 6, 3, 9, 1, 8, 0, 6, 7, 3, 4, 5, 9, 6, 9, 3, 9, 8, 4, 2, 5, 2, 5, 0, 3, 3, 3, 1, 6, 3, 7, 9, 9, 1, 6, 2, 2, 7, 2, 8, 7, 8, 6, 6, 0, 9, 2, 3, 3, 8, 8, 7, 2, 7, 2, 1, 1, 2, 3, 1, 4, 5, 6, 3, 2, 7, 4, 7
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Comments

Limit_{x -> inf} Sum {n=0..inf} (Floor[n/x])!^x/n! = e (A001113).
For A248682: x = 2; A248683: x = 3; A248684: x = 4; A248685: x = 5. - Robert G. Wilson v, Feb 22 2016
Let n} denote the swinging factorial A056040(n), then the constant equals Sum_{n>=0} 1/n} and is sometimes called the swinging constant e}. ("e}" is written in TeX $e\wr$). For a proof that it equals 3^(1/2)*(2/3)^3*Pi + 4/3 see the link to Mathematics Stack Exchange. - Peter Luschny, Jul 22 2022

Examples

			2.94559943487486031163918067345969398425250...
		

Crossrefs

Cf. A001113, A248683, A248684, A248785, A248664, A056040 (swinging factorial).

Programs

  • Mathematica
    RealDigits[Sum[(Floor[n/2])!^2/n!, {n, 0, 400}], 10, 111][[1]]
    RealDigits[4/3+8Pi/Sqrt[243],10,111][[1]] (* Robert G. Wilson v, Feb 10 2016 *)
  • PARI
    suminf(n=0, ((n\2)!)^2/n!) \\ Michel Marcus, Feb 11 2016

Formula

Equals Sum_{n >= 0} (n!^2)*p(2,n)/(2*n + 1)!, where p(k,n) is defined at A248664.
Equals Sum_{n >= 0} (floor(n/2)!)^2/n! = Sum_(n >= 1) (3n^2 - 7n + 6)/C(2n, n) = 4/3 + 8*Pi/sqrt(243). - Robert G. Wilson v, Feb 11 2016
Equals 1 + Integral_{x>=0} 1/(x^2 - x + 1)^2 dx. - Amiram Eldar, Nov 16 2021

A177833 Numbers k such that k^2 - 13 and k^2 + 13 are primes.

Original entry on oeis.org

4, 12, 18, 72, 84, 114, 198, 354, 378, 588, 612, 618, 864, 912, 948, 1032, 1068, 1134, 1320, 1410, 1428, 1452, 1500, 1830, 1956, 2046, 2058, 2172, 2298, 2448, 2634, 2748, 2844, 2856, 3192, 3246, 3390, 3474, 3846, 3906, 4092, 4182, 4506, 4842, 4884, 4890
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), May 14 2010

Keywords

Examples

			4^2 - 13 = 3 = prime(2), 4^2 + 13 = 29 = prime(10).
12^2 - 13 = 131 = prime(32), 12^2 + 13 = 157 = prime(37).
948^2 - 13 = 898691 = prime(71194), 948^2 + 13 = prime(71195), first case that they are consecutive primes.
		

References

  • J. Matousek and J. Nesetril, Diskrete Mathematik: eine Entdeckungsreise, Springer-Lehrbuch, 2. Aufl., Berlin, 2007

Crossrefs

Programs

  • Magma
    [n: n in [4..1000]| IsPrime(n^2-13) and IsPrime(n^2+13)]; // Vincenzo Librandi, Nov 30 2010
  • Maple
    with(numtheory): A248785:=n->`if`(isprime(n^2-13) and isprime(n^2+13), n, NULL): seq(A248785(n), n=1..10^4); # Wesley Ivan Hurt, Oct 13 2014
  • Mathematica
    Select[Range[2,5000,2],AllTrue[#^2+{13,-13},PrimeQ]&] (* Harvey P. Dale, May 28 2024 *)

Extensions

More terms from Vincenzo Librandi, May 16 2010
Name edited by Michel Marcus, Nov 25 2024

A248790 Numbers n with the property that p = n^2 - 11 and q = n^2 + 11 are consecutive primes.

Original entry on oeis.org

510, 720, 1200, 2190, 4350, 4980, 5040, 5250, 5670, 6810, 8280, 8490, 9150, 10140, 10650, 11430, 12510, 13800, 13980, 14160, 14640, 14700, 14820, 15000, 15750, 16890, 17220, 18180, 18270, 18750, 19110, 20940, 21270, 22050, 24000, 24570, 24720, 24990, 25620, 25920, 26520
Offset: 1

Views

Author

Zak Seidov, Oct 14 2014

Keywords

Comments

All terms are == 0 (mod 30).

Examples

			n=510, p=260089=prime(22845), q=260111=prime(22846).
		

Crossrefs

Subsequence of A176683 and of A075190. E.g., a(1)=510=A075190(62)=A176683(6).
Cf. A248785.

Programs

  • Mathematica
    Select[Range[30000],With[{c=#^2-11},PrimeQ[c]&&NextPrime[c]==c+22&]] (* Harvey P. Dale, Apr 03 2025 *)
  • PARI
    isok(n) = isprime(p=n^2-11) && isprime(q=n^2+11) && (q==nextprime(p+1)); \\ Michel Marcus, Oct 14 2014
Showing 1-3 of 3 results.